R Data Science Quick Reference

R Data Science Quick Reference

Author: Thomas Mailund

Publisher: Apress

Published: 2019-08-07

Total Pages: 246

ISBN-13: 1484248945

DOWNLOAD EBOOK

In this handy, practical book you will cover each concept concisely, with many illustrative examples. You'll be introduced to several R data science packages, with examples of how to use each of them. In this book, you’ll learn about the following APIs and packages that deal specifically with data science applications: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more. After using this handy quick reference guide, you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. What You Will LearnImport data with readrWork with categories using forcats, time and dates with lubridate, and strings with stringrFormat data using tidyr and then transform that data using magrittr and dplyrWrite functions with R for data science, data mining, and analytics-based applicationsVisualize data with ggplot2 and fit data to models using modelr Who This Book Is For Programmers new to R's data science, data mining, and analytics packages. Some prior coding experience with R in general is recommended.


The Data Science Design Manual

The Data Science Design Manual

Author: Steven S. Skiena

Publisher: Springer

Published: 2017-07-01

Total Pages: 456

ISBN-13: 3319554441

DOWNLOAD EBOOK

This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)


Data Scientist Pocket Guide

Data Scientist Pocket Guide

Author: Mohamed Sabri

Publisher: BPB Publications

Published: 2021-06-24

Total Pages: 418

ISBN-13: 9390684978

DOWNLOAD EBOOK

Discover one of the most complete dictionaries in data science. KEY FEATURES ● Simplified understanding of complex concepts, terms, terminologies, and techniques. ● Combined glossary of machine learning, mathematics, and statistics. ● Chronologically arranged A-Z keywords with brief description. DESCRIPTION This pocket guide is a must for all data professionals in their day-to-day work processes. This book brings a comprehensive pack of glossaries of machine learning, deep learning, mathematics, and statistics. The extensive list of glossaries comprises concepts, processes, algorithms, data structures, techniques, and many more. Each of these terms is explained in the simplest words possible. This pocket guide will help you to stay up to date of the most essential terms and references used in the process of data analysis and machine learning. WHAT YOU WILL LEARN ● Get absolute clarity on every concept, process, and algorithm used in the process of data science operations. ● Keep yourself technically strong and sound-minded during data science meetings. ● Strengthen your knowledge in the field of Big data and business intelligence. WHO THIS BOOK IS FOR This book is for data professionals, data scientists, students, or those who are new to the field who wish to stay on top of industry jargon and terminologies used in the field of data science. TABLE OF CONTENTS 1. Chapter one: A 2. Chapter two: B 3. Chapter three: C 4. Chapter four: D 5. Chapter five: E 6. Chapter six: F 7. Chapter seven: G 8. Chapter eight: H 9. Chapter nine: I 10. Chapter ten: J 11. Chapter 11: K 12. Chapter 12: L 13. Chapter 13: M 14. Chapter 14: N 15. Chapter 15: O 16. Chapter 16: P 17. Chapter 17: Q 18. Chapter 18: R 19. Chapter 19 : S 20. Chapter 20 : T 21. Chapter 21 : U 22. Chapter 22 : V 23. Chapter 23: W 24. Chapter 24: X 25. Chapter 25: Y 26. Chapter 26 : Z


Geospatial Data Science Quick Start Guide

Geospatial Data Science Quick Start Guide

Author: Abdishakur Hassan

Publisher: Packt Publishing Ltd

Published: 2019-05-31

Total Pages: 165

ISBN-13: 1789809339

DOWNLOAD EBOOK

Discover the power of location data to build effective, intelligent data models with Geospatial ecosystems Key FeaturesManipulate location-based data and create intelligent geospatial data modelsBuild effective location recommendation systems used by popular companies such as UberA hands-on guide to help you consume spatial data and parallelize GIS operations effectivelyBook Description Data scientists, who have access to vast data streams, are a bit myopic when it comes to intrinsic and extrinsic location-based data and are missing out on the intelligence it can provide to their models. This book demonstrates effective techniques for using the power of data science and geospatial intelligence to build effective, intelligent data models that make use of location-based data to give useful predictions and analyses. This book begins with a quick overview of the fundamentals of location-based data and how techniques such as Exploratory Data Analysis can be applied to it. We then delve into spatial operations such as computing distances, areas, extents, centroids, buffer polygons, intersecting geometries, geocoding, and more, which adds additional context to location data. Moving ahead, you will learn how to quickly build and deploy a geo-fencing system using Python. Lastly, you will learn how to leverage geospatial analysis techniques in popular recommendation systems such as collaborative filtering and location-based recommendations, and more. By the end of the book, you will be a rockstar when it comes to performing geospatial analysis with ease. What you will learnLearn how companies now use location dataSet up your Python environment and install Python geospatial packagesVisualize spatial data as graphsExtract geometry from spatial dataPerform spatial regression from scratchBuild web applications which dynamically references geospatial dataWho this book is for Data Scientists who would like to leverage location-based data and want to use location-based intelligence in their data models will find this book useful. This book is also for GIS developers who wish to incorporate data analysis in their projects. Knowledge of Python programming and some basic understanding of data analysis are all you need to get the most out of this book.


Data Science Job: How to become a Data Scientist

Data Science Job: How to become a Data Scientist

Author: Przemek Chojecki

Publisher: Przemek Chojecki

Published: 2020-01-31

Total Pages: 89

ISBN-13:

DOWNLOAD EBOOK

We’re living in a digital world. Most of our global economy is digital and the sheer volume of data is stupendous. It’s 2020 and we’re living in the future. Data Scientist is one of the hottest job on the market right now. Demand for data science is huge and will only grow, and it seems like it will grow much faster than the actual number of data scientists. So if you want to make a career change and become a data scientist, now is the time. This book will guide you through the process. From my experience of working with multiple companies as a project manager, a data science consultant or a CTO, I was able to see the process of hiring data scientists and building data science teams. I know what’s important to land your first job as a data scientist, what skills you should acquire, what you should show during a job interview.


Data Science Quick Reference Manual – Methodological Aspects, Data Acquisition, Management and Cleaning

Data Science Quick Reference Manual – Methodological Aspects, Data Acquisition, Management and Cleaning

Author: Mario A. B. Capurso

Publisher: Mario Capurso

Published:

Total Pages: 228

ISBN-13:

DOWNLOAD EBOOK

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. First of a series of books, it covers methodological aspects, data acquisition, management and cleaning. It describes the CRISP DM methodology, the working phases, the success criteria, the languages and the environments that can be used, the application libraries. Since this book uses Orange for the application aspects, its installation and widgets are described. Dealing with data acquisition, the book describes data sources, the acceleration techniques, the discretization methods, the security standards, the types and representations of the data, the techniques for managing corpus of texts such as bag-of-words, word-count , TF-IDF, n-grams, lexical analysis, syntactic analysis, semantic analysis, stop word filtering, stemming, techniques for representing and processing images, sampling, filtering, web scraping techniques. Examples are given in Orange. Data quality dimensions are analysed, and then the book considers algorithms for entity identification, truth discovery, rule-based cleaning, missing and repeated value handling, categorical value encoding, outlier cleaning, and errors, inconsistency management, scaling, integration of data from various sources and classification of open sources, application scenarios and the use of databases, datawarehouses, data lakes and mediators, data schema mapping and the role of RDF, OWL and SPARQL, transformations. Examples are given in Orange. The book is accompanied by supporting material and it is possible to download the project samples in Orange and sample data.


Data Science Quick Reference Manual Analysis and Visualization

Data Science Quick Reference Manual Analysis and Visualization

Author: Mario A. B. Capurso

Publisher: Mario A.B. Capurso

Published:

Total Pages: 221

ISBN-13:

DOWNLOAD EBOOK

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Second of a series of books, it covers methodological aspects, analysis and visualization. It describes the CRISP DM methodology, the working phases, the success criteria, the languages and the environments that can be used, the application libraries. Since this book uses Orange for the application aspects, its installation and widgets are described. In visualization, historical notes are made, and next the book describes the characteristics of an effective visualization, the types of messages that can be conveyed, the Grammar of Graphics, the use of a graph and a dashboard, the software and libraries that can be used, the role and use of color. 55 types of graphs are then analyzed, reporting meaning, use, examples and visual dimensions also with a vocabulary of graphs and summary tables. Examples are given in Orange and the possible use of Python with Orange is explained. Visualization-based inference is discussed, exploratory and confirmatory analysis is defined and techniques are reported. The book is accompanied by supporting material and it is possible to download the project samples in Orange and sample data.


R for Data Science

R for Data Science

Author: Hadley Wickham

Publisher: "O'Reilly Media, Inc."

Published: 2016-12-12

Total Pages: 521

ISBN-13: 1491910364

DOWNLOAD EBOOK

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results


Data Science Quick Reference Manual - Modeling and Machine Learning

Data Science Quick Reference Manual - Modeling and Machine Learning

Author: Mario A. B. Capurso

Publisher: Mario Capurso

Published: 2023-08-31

Total Pages: 191

ISBN-13:

DOWNLOAD EBOOK

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Part of a series of books, it first summarizes the standard CRISP DM working methodology used in this work and in Data Science projects. Since this text uses Orange for the application aspects, it describes its installation and widgets. Then it considers the concept of model, its life cycle and the relationship with measures and metrics. The data modeling phase is considered from the point of view of machine learning by deepening the types of machine learning, the types of models, the types of problems and the types of algorithms. After considering the ideal characteristics of models and algorithms, a vocabulary of the types of models and algorithms is compiled and their use in Orange is considered through two supervised and unsupervised projects respectively. The text is accompanied by supporting material and you can download the samples in Orange and the test data.