Data Mining in E-learning

Data Mining in E-learning

Author: Cristobal Romero

Publisher: WIT Press

Published: 2006

Total Pages: 329

ISBN-13: 1845641523

DOWNLOAD EBOOK

The development of e-learning systems, particularly, web-based education systems, has increased exponentially in recent years. Following this line, one of the most promising areas is the application of knowledge extraction. As one of the first of its kind, this book presents an introduction to e-learning systems, data mining concepts and the interaction between both areas.


Data Mining and Learning Analytics

Data Mining and Learning Analytics

Author: Samira ElAtia

Publisher: John Wiley & Sons

Published: 2016-09-20

Total Pages: 351

ISBN-13: 1118998219

DOWNLOAD EBOOK

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.


Utilizing Educational Data Mining Techniques for Improved Learning: Emerging Research and Opportunities

Utilizing Educational Data Mining Techniques for Improved Learning: Emerging Research and Opportunities

Author: Bhatt, Chintan

Publisher: IGI Global

Published: 2019-08-02

Total Pages: 180

ISBN-13: 1799800121

DOWNLOAD EBOOK

Modern education has increased its reach through ICT tools and techniques. To manage educational data with the help of modern artificial intelligence, data and web mining techniques on dedicated cloud or grid platforms for educational institutes can be used. By utilizing data science techniques to manage educational data, the safekeeping, delivery, and use of knowledge can be increased for better quality education. Utilizing Educational Data Mining Techniques for Improved Learning: Emerging Research and Opportunities is a critical scholarly resource that explores data mining and management techniques that promote the improvement and optimization of educational data systems. The book intends to provide new models, platforms, tools, and protocols in data science for educational data analysis and introduces innovative hybrid system models dedicated to data science. Including topics such as automatic assessment, educational analytics, and machine learning, this book is essential for IT specialists, data analysts, computer engineers, education professionals, administrators, policymakers, researchers, academicians, and technology experts.


Educational Data Mining

Educational Data Mining

Author: Alejandro Peña-Ayala

Publisher: Springer

Published: 2013-11-08

Total Pages: 477

ISBN-13: 3319027387

DOWNLOAD EBOOK

This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research. After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows: · Profile: The first part embraces three chapters oriented to: 1) describe the nature of educational data mining (EDM); 2) describe how to pre-process raw data to facilitate data mining (DM); 3) explain how EDM supports government policies to enhance education. · Student modeling: The second part contains five chapters concerned with: 4) explore the factors having an impact on the student's academic success; 5) detect student's personality and behaviors in an educational game; 6) predict students performance to adjust content and strategies; 7) identify students who will most benefit from tutor support; 8) hypothesize the student answer correctness based on eye metrics and mouse click. · Assessment: The third part has four chapters related to: 9) analyze the coherence of student research proposals; 10) automatically generate tests based on competences; 11) recognize students activities and visualize these activities for being presented to teachers; 12) find the most dependent test items in students response data. · Trends: The fourth part encompasses four chapters about how to: 13) mine text for assessing students productions and supporting teachers; 14) scan student comments by statistical and text mining techniques; 15) sketch a social network analysis (SNA) to discover student behavior profiles and depict models about their collaboration; 16) evaluate the structure of interactions between the students in social networks. This volume will be a source of interest to researchers, practitioners, professors, and postgraduate students aimed at updating their knowledge and find targets for future work in the field of educational data mining.


Data Mining

Data Mining

Author: Ian H. Witten

Publisher: Elsevier

Published: 2011-02-03

Total Pages: 665

ISBN-13: 0080890369

DOWNLOAD EBOOK

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization


Data Mining and Machine Learning

Data Mining and Machine Learning

Author: Mohammed J. Zaki

Publisher: Cambridge University Press

Published: 2020-01-30

Total Pages: 779

ISBN-13: 1108473989

DOWNLOAD EBOOK

New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.


Evolution of Teaching and Learning Paradigms in Intelligent Environment

Evolution of Teaching and Learning Paradigms in Intelligent Environment

Author: Raymond A. Tedman

Publisher: Springer

Published: 2011-04-07

Total Pages: 310

ISBN-13: 3540719741

DOWNLOAD EBOOK

This book is a fascinating window on the evolution of teaching and learning paradigms in intelligent environments. It presents the latest ideas coming out of educational computing research. The three Australian authors include a number of chapters on issues of real relevance to today’s teaching practice, including an introduction to the evolution of teaching and learning paradigms; why designers cannot be agnostic about pedagogy, and the influence of constructivist thinking in design of e-learning for HE.


Collaborative Filtering Using Data Mining and Analysis

Collaborative Filtering Using Data Mining and Analysis

Author: Bhatnagar, Vishal

Publisher: IGI Global

Published: 2016-07-13

Total Pages: 336

ISBN-13: 1522504907

DOWNLOAD EBOOK

Internet usage has become a normal and essential aspect of everyday life. Due to the immense amount of information available on the web, it has become obligatory to find ways to sift through and categorize the overload of data while removing redundant material. Collaborative Filtering Using Data Mining and Analysis evaluates the latest patterns and trending topics in the utilization of data mining tools and filtering practices. Featuring emergent research and optimization techniques in the areas of opinion mining, text mining, and sentiment analysis, as well as their various applications, this book is an essential reference source for researchers and engineers interested in collaborative filtering.


Data Mining and Analysis

Data Mining and Analysis

Author: Mohammed J. Zaki

Publisher: Cambridge University Press

Published: 2014-05-12

Total Pages: 607

ISBN-13: 0521766338

DOWNLOAD EBOOK

A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.


Principles and Theory for Data Mining and Machine Learning

Principles and Theory for Data Mining and Machine Learning

Author: Bertrand Clarke

Publisher: Springer Science & Business Media

Published: 2009-07-21

Total Pages: 786

ISBN-13: 0387981357

DOWNLOAD EBOOK

Extensive treatment of the most up-to-date topics Provides the theory and concepts behind popular and emerging methods Range of topics drawn from Statistics, Computer Science, and Electrical Engineering