Low Complexity Iterative Receiver Design for OFDM Systems

Low Complexity Iterative Receiver Design for OFDM Systems

Author: Vamadevan Namboodiri

Publisher:

Published: 2012

Total Pages: 107

ISBN-13:

DOWNLOAD EBOOK

Single Input Single Output (SISO) Orthogonal Frequency Division Multiplexing (OFDM) systems have been adopted in many of the recent wireless communication standards such as European terrestrial broadcast systems based on DVB-H, DVB-T and DVB-T2. For OFDM systems, cyclic prefix of sufficient length makes the receiver design simple in frequency-selective multipath environments. Wireless communication based on Multiple Input Multiple Output (MIMO) systems has gained popularity due to the potential capacity increases it can provide. MIMO-OFDM based transmission systems can thus provide very high data rates with a relatively simple receiver design and are now adopted widely in recent wireless communication standards such as Long Term Evolution (LTE), WiMAX and WiFi. Modern wireless communication applications, both SISO and MIMO, require high data rates at high carrier frequencies and at high levels of mobility. This results in less intercarrier spacing and severe time-varying frequency-selective multipath fading, which breaks the orthogonality of subcarriers and causes intercarrier interference (ICI) in the received signal thus severely impacting the BER performance of the receiver. Hence, efficient receiver design which is fundamental to any communication system is ever more relevant. Turbo iterative receivers (IR) are based on the observation that performance of the system can be significantly improved if detection and decoding are combined together. They, in general, are found to have superior performance compared to other solutions, however turbo IRs usually suffer from high computational complexity which makes their implementation expensive. Such practical application challenges motivate us to propose a new, low complexity, Turbo IR for SISO and MIMO OFDM systems under time varying frequency selective channel conditions. Motivated by the classical TE, we first propose a sub-optimal, successive interference cancellation and MAP decoding (SIC-MAP) algorithm for SISO systems. In SIC-MAP, copies of the received signal on the same and adjacent subcarriers are carefully combined to take advantage of the frequency diversity (on account of the time variations of the channel) while eliminating the interference from the other transmit symbols leveraging the feedback information from the decoder. The resulting system matrix becomes a single column vector which allows an easy MAP decoding. BER performance, computation complexity, and convergence behavior of the proposed scheme has been contrasted with two other similar schemes. It has been found that SIC-MAP, while having near identical performance to the competing schemes, can be implemented approximately with only a third of their computational complexity. Subsequently, we extend the above detection idea, SIC-MAP, to MIMO systems (SIC-MAP-MIMO). Unlike single antenna systems, even under static multipath channel conditions, the received signal in a MIMO receiver is corrupted by the co-antenna interference (CAI), thus making the detection task more challenging. SIC-MAP-MIMO algorithm achieves comparable BER performance to the competing equalization schemes but with even more computational savings than SISO. A low complexity Least Squares (LS) based iterative channel estimation scheme using soft feedback information has also been proposed. This scheme is especially suitable when the number of significant channel taps is higher than the number of pilots, a phenomenon that is often encountered in practical systems.


Efficient Detection and Scheduling for MIMO-OFDM Systems

Efficient Detection and Scheduling for MIMO-OFDM Systems

Author: Wei Liu

Publisher:

Published: 2012

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

Multiple-input multiple-output (MIMO) antennas can be exploited to provide high data rate using a limited bandwidth through multiplexing gain. MIMO combined with orthogonal frequency division multiplexing (OFDM) could potentially provide high data rate and high spectral efficiency in frequency-selective fading channels. MIMO-OFDM technology has been widely employed in modern communication systems, such as Wireless Local Area Network (WLAN), Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX). However, most of the conventional schemes either are computationally prohibitive or underutilize the full performance gain provided by the inherent merits of MIMO and OFDM techniques. In the first part of this dissertation, we firstly study the channel matrix inversion which is commonly required in various MIMO detection schemes. An algorithm that exploits second-order extrapolation in the time domain is proposed to efficiently reduce the computational complexity. This algorithm can be applied to both linear detection and non-linear detection such as ordered successive interference cancellation (OSIC) while maintaining the system performance. Secondly, we study the complexity reduction for Lattice Reduction Aided Detection (LRAD) of MIMO-OFDM systems. We propose an algorithm that exploits the inherent feature of unimodular transformation matrix that remains the same for relatively highly correlated frequency components. This algorithm effectively eliminates the redundant brute-force lattice reduction iterations among adjacent subcarriers. Thirdly, we analyze the impact of channel coherence bandwidth on two LRAD algorithms. Analytical and simulation results demonstrate that carefully setting the initial calculation interval according to the coherence bandwidth is essential for both algorithms. The second part of this dissertation focuses on efficient multi-user (MU) scheduling and coordination for the uplink of WLAN that uses MIMO-OFDM techniques. On one hand, conventional MU-MIMO medium access control (MAC) protocols require large overhead, which lowers the performance gain of concurrent transmissions rendered by the multi-packet reception (MPR) capability of MIMO systems. Therefore, an efficient MU-MIMO uplink MAC scheduling scheme is proposed for future WLAN. On the other hand, single-user (SU) MIMO achieves multiplexing gain in the physical (PHY) layer and MU-MIMO achieves multiplexing gain in the MAC layer. In addition, the average throughput of the system varies depending on the number of antennas and users, average payload sizes, and signal-to-noise-ratios (SNRs). A comparison on the performance between SU-MIMO and MU-MIMO schemes for WLAN uplink is hence conducted. Simulation results indicate that a dynamic switch between the SU-MIMO and MU-MIMO is of significance for higher network throughput of WLAN uplink.


Channel Estimation and Data Detection for Mobile MIMO OFDM Systems

Channel Estimation and Data Detection for Mobile MIMO OFDM Systems

Author: Jie Gao

Publisher:

Published: 2005

Total Pages: 210

ISBN-13:

DOWNLOAD EBOOK

Designing spectral efficient, high-speed wireless links that offer high quality- of-service and range capability has been a critical research and engineering challenge. In this thesis, we mainly address the complexity and performance issues of channel estimation and data detection in multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems over time-varying channels. We derive the probability density function (pdf) expressions of the condition number (i.e., the maximum-to-minimum-singular-value ratio, MMSVR) of the channel state information matrix of MIMO OFDM systems. It is shown that this ratio is directly related to the noise enhancement in open-loop systems and provides a significant insight on the system capacity. A decision-directed (DD) maximum a posteriori probability (MAP) channel estimation scheme of MIMO systems is derived. Error performance of a zero- forcing receiver with the DD MAP and perfect channel estimates is provided and compared. This scheme has a low complexity and can be applied to time-varying Rayleigh fading channels with an arbitrary spaced-time correlation function. We propose an iterative channel estimation and data detection scheme for MIMO OFDM systems in the presence of inter-carrier-interference (ICI) due to the nature of time-varying channels. An ICI-based minimum-mean-square error (MMSE) detection scheme is derived. An expectation-maximization (EM) based least square (LS) channel estimator is proposed to minimize the mean-square error (MSE) of the channel estimates and to reduce the complexity of the implementation. With the estimate of the channel and initially detected symbols, ICI is estimated and removed from the received signal. Thus more accurate estimation of the channel and data detection can be obtained in the next iteration. An EM-based MAP channel estimator is derived by exploiting the frequency/time correlation of the pilot and data sub-carriers. Performance comparison is made between the proposed schemes and the ideal case - time-invariant channels and perfect channel estimation. We optimize the data transmission by exploiting the long term correlation characteristics. The transmitted data is successively detected without an error floor in spatially correlated channels. The algorithms proposed in this thesis allow low-complexity implementation of channel estimation and data detection for MIMO OFDM systems over time-varying fading channels, while providing good error performance.


MIMO-OFDM for LTE, WiFi and WiMAX

MIMO-OFDM for LTE, WiFi and WiMAX

Author: Lajos Hanzo

Publisher: John Wiley & Sons

Published: 2010-11-01

Total Pages: 708

ISBN-13: 0470686693

DOWNLOAD EBOOK

MIMO-OFDM for LTE, WIFI and WIMAX: Coherent versus Non-Coherent and Cooperative Turbo-Transceivers provides an up-to-date portrayal of wireless transmission based on OFDM techniques augmented with Space-Time Block Codes (STBCs) and Spatial-Division Multiple Access (SDMA). The volume also offers an in-depth treatment of cutting-edge Cooperative Communications. This monograph collates the latest techniques in a number of specific design areas of turbo-detected MIMO-OFDM wireless systems. As a result a wide range of topical subjects are examined, including channel coding and multiuser detection (MUD), with a special emphasis on optimum maximum-likelihood (ML) MUDs, reduced-complexity genetic algorithm aided near-ML MUDs and sphere detection. The benefits of spreading codes as well as joint iterative channel and data estimation are only a few of the radical new features of the book. Also considered are the benefits of turbo and LDPC channel coding, the entire suite of known joint coding and modulation schemes, space-time coding as well as SDM/SDMA MIMOs within the context of various application examples. The book systematically converts the lessons of Shannon's information theory into design principles applicable to practical wireless systems; the depth of discussions increases towards the end of the book. Discusses many state-of-the-art topics important to today's wireless communications engineers. Includes numerous complete system design examples for the industrial practitioner. Offers a detailed portrayal of sphere detection. Based on over twenty years of research into OFDM in the context of various applications, subsequently presenting comprehensive bibliographies.


Layered Space-time Structure for MIMO-OFDM Systems

Layered Space-time Structure for MIMO-OFDM Systems

Author: Jianxuan Du

Publisher:

Published: 2005

Total Pages: 94

ISBN-13:

DOWNLOAD EBOOK

The low complexity of layered processing makes the layered structure a promising candidate for MIMO systems with a large number of transmit antennas and higher order modulation. For broadband systems, orthogonal frequency division multiplexing (OFDM) appears promising for its immunity against delay spread. In addition, OFDM is especially suitable for frequency selective MIMO systems since the introduction of orthogonal subcarriers makes system design and implementation as simple as those for flat fading channels. Therefore, the combination of layered structure with OFDM is a promising technique for high-speed wireless data transmission. The proposed research is focused on the layered structure for MIMO-OFDM systems, where several techniques are proposed for performance enhancement, namely, channel estimation based on subspace tracking, parallel detection of group-wise space-time codes by predictive soft interference cancellation, quasi-block diagonal low-density parity-check codes (LDPC) coding and statistical data rate allocation for layered systems. For MIMO-OFDM systems, rank reduction by some linear transform matrix is necessary for channel estimation. In the proposed research, we propose a channel estimation algorithm for MIMO-OFDM systems, which uses the optimum low-rank channel approximation obtained by tracking the frequency autocorrelation matrix of the channel response. Then parallel detection algorithm is proposed for a modified layered system with group-wise space-time coding, where the structure of particular component space-time code trellises is exploited using partial information from the Viterbi decoder of the simultaneously decoded interfering component codes. Next we incorporate the layered structure with LDPC to develop a quasi-block diagonal LDPC space-time structure. The lower triangular structure of the parity check matrix introduces correlation between layers. Each layer, as a part of the whole codeword, can be decoded while taking information from other undetected layers to improve the decoding performance. In the end, a modified layered structure is proposed where the layer detection order is fixed and the data rate for each layer is allocated based on the detection order and channel statistics. With Gaussian approximation of layer capacities, we derive the optimum data rate allocation.


Wireless MIMO-OFDM Systems with Coherent and Non-Coherent Detection

Wireless MIMO-OFDM Systems with Coherent and Non-Coherent Detection

Author: Alexander Vanaev

Publisher: Cuvillier Verlag

Published: 2013-02-05

Total Pages: 206

ISBN-13: 3736943423

DOWNLOAD EBOOK

In this thesis the physical layer design of broadband MIMO-OFDM communication systems is considered taking into account the realistic multipath radio channel. The main focus is made on examining a number of coherent and non-coherent MIMO techniques both analytically and via computer simulations. Several proposals are made to assist intelligent selection of MIMO precoding and decoding algorithms. Additionally two novel improved differential transmission schemes are presented and analyzed. In dieser Arbeit wird der Entwurf der physikalischen Schicht für breitbandige MIMO-OFDM Kommunikationssysteme betrachtet. Dazu werden realistische Funkkanalmodelle mit Mehrwegeausbreitung berücksichtigt. Ein wesentlicher Schwerpunkt der Arbeit liegt auf Untersuchungen zu kohärenten und nichtkohärenten MIMO-Techniken, die sowohl analytisch als auch mit Hilfe von Computersimulationen durchgeführt werden. Es werden verschiedene Vorschläge erarbeitet, wie eine intelligente Auswahl von MIMO-Techniken zur Vorcodierung sowie zur Decodierung getroffen werden kann. Darüber hinaus werden zwei neuartige, verbesserte differentielle Übertragungsverfahren vorgestellt und analysiert.