Data Analytics in the AWS Cloud

Data Analytics in the AWS Cloud

Author: Joe Minichino

Publisher: John Wiley & Sons

Published: 2023-04-06

Total Pages: 428

ISBN-13: 1119909252

DOWNLOAD EBOOK

A comprehensive and accessible roadmap to performing data analytics in the AWS cloud In Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS, accomplished software engineer and data architect Joe Minichino delivers an expert blueprint to storing, processing, analyzing data on the Amazon Web Services cloud platform. In the book, you’ll explore every relevant aspect of data analytics—from data engineering to analysis, business intelligence, DevOps, and MLOps—as you discover how to integrate machine learning predictions with analytics engines and visualization tools. You’ll also find: Real-world use cases of AWS architectures that demystify the applications of data analytics Accessible introductions to data acquisition, importation, storage, visualization, and reporting Expert insights into serverless data engineering and how to use it to reduce overhead and costs, improve stability, and simplify maintenance A can't-miss for data architects, analysts, engineers and technical professionals, Data Analytics in the AWS Cloud will also earn a place on the bookshelves of business leaders seeking a better understanding of data analytics on the AWS cloud platform.


Data Analytics in the AWS Cloud

Data Analytics in the AWS Cloud

Author: Joe Minichino

Publisher: John Wiley & Sons

Published: 2023-04-06

Total Pages: 428

ISBN-13: 1119909252

DOWNLOAD EBOOK

A comprehensive and accessible roadmap to performing data analytics in the AWS cloud In Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS, accomplished software engineer and data architect Joe Minichino delivers an expert blueprint to storing, processing, analyzing data on the Amazon Web Services cloud platform. In the book, you’ll explore every relevant aspect of data analytics—from data engineering to analysis, business intelligence, DevOps, and MLOps—as you discover how to integrate machine learning predictions with analytics engines and visualization tools. You’ll also find: Real-world use cases of AWS architectures that demystify the applications of data analytics Accessible introductions to data acquisition, importation, storage, visualization, and reporting Expert insights into serverless data engineering and how to use it to reduce overhead and costs, improve stability, and simplify maintenance A can't-miss for data architects, analysts, engineers and technical professionals, Data Analytics in the AWS Cloud will also earn a place on the bookshelves of business leaders seeking a better understanding of data analytics on the AWS cloud platform.


Advanced Data Analytics with AWS

Advanced Data Analytics with AWS

Author: Joseph Conley

Publisher: Orange Education Pvt Ltd

Published: 2024-04-17

Total Pages: 268

ISBN-13: 8197081891

DOWNLOAD EBOOK

Master the Fundamentals of Data Analytics at Scale KEY FEATURES ● Comprehensive guide to constructing data engineering workflows spanning diverse data sources ● Expert techniques for transforming and visualizing data to extract actionable insights ● Advanced methodologies for analyzing data and employing machine learning to uncover intricate patterns DESCRIPTION Embark on a transformative journey into the realm of data analytics with AWS with this practical and incisive handbook. Begin your exploration with an insightful introduction to the fundamentals of data analytics, setting the stage for your AWS adventure. The book then covers collecting data efficiently and effectively on AWS, laying the groundwork for insightful analysis. It will dive deep into processing data, uncovering invaluable techniques to harness the full potential of your datasets. The book will equip you with advanced data analysis skills, unlocking the ability to discern complex patterns and insights. It covers additional use cases for data analysis on AWS, from predictive modeling to sentiment analysis, expanding your analytical horizons. The final section of the book will utilize the power of data virtualization and interaction, revolutionizing the way you engage with and derive value from your data. Gain valuable insights into emerging trends and technologies shaping the future of data analytics, and conclude your journey with actionable next steps, empowering you to continue your data analytics odyssey with confidence. WHAT WILL YOU LEARN ● Construct streamlined data engineering workflows capable of ingesting data from diverse sources and formats. ● Employ data transformation tools to efficiently cleanse and reshape data, priming it for analysis. ● Perform ad-hoc queries for preliminary data exploration, uncovering initial insights. ● Utilize prepared datasets to craft compelling, interactive data visualizations that communicate actionable insights. ● Develop advanced machine learning and Generative AI workflows to delve into intricate aspects of complex datasets, uncovering deeper insights. WHO IS THIS BOOK FOR? This book is ideal for aspiring data engineers, analysts, and data scientists seeking to deepen their understanding and practical skills in data engineering, data transformation, visualization, and advanced analytics. It is also beneficial for professionals and students looking to leverage AWS services for their data-related tasks. TABLE OF CONTENTS 1. Introduction to Data Analytics and AWS 2. Getting Started with AWS 3. Collecting Data with AWS 4. Processing Data on AWS 5. Descriptive Analytics on AWS 6. Advanced Data Analysis on AWS 7. Additional Use Cases for Data Analysis 8. Data Visualization and Interaction on AWS 9. The Future of Data Analytics 10. Conclusion and Next Steps Index


AWS certification guide - AWS Certified Data Analytics - Specialty

AWS certification guide - AWS Certified Data Analytics - Specialty

Author: Cybellium Ltd

Publisher: Cybellium Ltd

Published:

Total Pages: 219

ISBN-13:

DOWNLOAD EBOOK

AWS Certification Guide - AWS Certified Data Analytics – Specialty Unlock the Power of AWS Data Analytics Dive into the evolving world of AWS data analytics with this comprehensive guide, tailored for those pursuing the AWS Certified Data Analytics – Specialty certification. This book is an essential resource for professionals seeking to validate their expertise in extracting meaningful insights from data using AWS analytics services. Inside, You'll Discover: Comprehensive Analytics Concepts: Thorough exploration of AWS data analytics services and tools, including Kinesis, Redshift, Glue, and more. Real-World Scenarios: Practical examples and case studies that demonstrate how to effectively use AWS services for data analysis, processing, and visualization. Targeted Exam Preparation: Insights into the certification exam format, with chapters aligned to the exam domains, complete with detailed explanations and practice questions. Latest Trends and Best Practices: Up-to-date information on the newest AWS features and data analytics best practices, ensuring your skills remain at the cutting edge. Authored by a Data Analytics Expert Written by a professional with extensive experience in AWS data analytics, this guide melds practical application with theoretical knowledge, providing a rich learning experience. Your Comprehensive Analytics Resource Whether you are deepening your existing skills or embarking on a new specialty in data analytics, this book is your definitive companion, offering a deep dive into AWS analytics services and preparing you for the Specialty certification exam. Advance Your Data Analytics Career Go beyond the fundamentals and master the complexities of AWS data analytics. This guide is not just about passing the exam; it's about developing expertise that can be applied in real-world scenarios, propelling your career forward in this exciting domain. Start Your Specialized Analytics Journey Today Embark on your path to becoming an AWS Certified Data Analytics specialist. This guide is your first step towards mastering AWS analytics and unlocking new career opportunities in the field of data. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com


Data Science on AWS

Data Science on AWS

Author: Chris Fregly

Publisher: "O'Reilly Media, Inc."

Published: 2021-04-07

Total Pages: 524

ISBN-13: 1492079340

DOWNLOAD EBOOK

With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more


AWS Certified Data Analytics Study Guide with Online Labs

AWS Certified Data Analytics Study Guide with Online Labs

Author: Asif Abbasi

Publisher: John Wiley & Sons

Published: 2021-04-13

Total Pages: 416

ISBN-13: 1119819458

DOWNLOAD EBOOK

Virtual, hands-on learning labs allow you to apply your technical skills in realistic environments. So Sybex has bundled AWS labs from XtremeLabs with our popular AWS Certified Data Analytics Study Guide to give you the same experience working in these labs as you prepare for the Certified Data Analytics Exam that you would face in a real-life application. These labs in addition to the book are a proven way to prepare for the certification and for work as an AWS Data Analyst. AWS Certified Data Analytics Study Guide: Specialty (DAS-C01) Exam is intended for individuals who perform in a data analytics-focused role. This UPDATED exam validates an examinee's comprehensive understanding of using AWS services to design, build, secure, and maintain analytics solutions that provide insight from data. It assesses an examinee's ability to define AWS data analytics services and understand how they integrate with each other; and explain how AWS data analytics services fit in the data lifecycle of collection, storage, processing, and visualization. The book focuses on the following domains: • Collection • Storage and Data Management • Processing • Analysis and Visualization • Data Security This is your opportunity to take the next step in your career by expanding and validating your skills on the AWS cloud. AWS is the frontrunner in cloud computing products and services, and the AWS Certified Data Analytics Study Guide: Specialty exam will get you fully prepared through expert content, and real-world knowledge, key exam essentials, chapter review questions, and much more. Written by an AWS subject-matter expert, this study guide covers exam concepts, and provides key review on exam topics. Readers will also have access to Sybex's superior online interactive learning environment and test bank, including chapter tests, practice exams, a glossary of key terms, and electronic flashcards. And included with this version of the book, XtremeLabs virtual labs that run from your browser. The registration code is included with the book and gives you 6 months of unlimited access to XtremeLabs AWS Certified Data Analytics Labs with 3 unique lab modules based on the book.


Big-Data Analytics for Cloud, IoT and Cognitive Computing

Big-Data Analytics for Cloud, IoT and Cognitive Computing

Author: Kai Hwang

Publisher: John Wiley & Sons

Published: 2017-08-14

Total Pages: 428

ISBN-13: 1119247020

DOWNLOAD EBOOK

The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming. Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools. The first book describing a practical approach to integrating social, mobile, analytics, cloud and IoT (SMACT) principles and technologies Covers theory and computing techniques and technologies, making it suitable for use in both computer science and electrical engineering programs Offers an extremely well-informed vision of future intelligent and cognitive computing environments integrating SMACT technologies Fully illustrated throughout with examples, figures and approximately 150 problems to support and reinforce learning Features a companion website with an instructor manual and PowerPoint slides www.wiley.com/go/hwangIOT Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among university faculty and students for cutting-edge information on emerging intelligent and cognitive computing systems and technologies. Professionals working in data science, cloud computing and IoT applications will also find this book to be an extremely useful working resource.


Data Science For Dummies

Data Science For Dummies

Author: Lillian Pierson

Publisher: John Wiley & Sons

Published: 2021-08-20

Total Pages: 436

ISBN-13: 1119811619

DOWNLOAD EBOOK

Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.


A Practical Guide to Artificial Intelligence and Data Analytics

A Practical Guide to Artificial Intelligence and Data Analytics

Author: Rayan Wali

Publisher: Rayan Wali

Published: 2021-06-12

Total Pages: 605

ISBN-13:

DOWNLOAD EBOOK

Whether you are looking to prepare for AI/ML/Data Science job interviews or you are a beginner in the field of Data Science and AI, this book is designed for engineers and AI enthusiasts like you at all skill levels. Taking a different approach from a traditional textbook style of instruction, A Practical Guide to AI and Data Analytics touches on all of the fundamental topics you will need to understand deeper into machine learning and artificial intelligence research, literature, and practical applications with its four parts: Part I: Concept Instruction Part II: 8 Full-Length Case Studies Part III: 50+ Mixed Exercises Part IV: A Full-Length Assessment With an illustrative approach to instruction, worked examples, and case studies, this easy-to-understand book simplifies many of the AI and Data Analytics key concepts, leading to an improvement of AI/ML system design skills.


Data Mining for Business Analytics

Data Mining for Business Analytics

Author: Galit Shmueli

Publisher: John Wiley & Sons

Published: 2019-10-14

Total Pages: 608

ISBN-13: 111954985X

DOWNLOAD EBOOK

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R