Healthcare Data Analytics

Healthcare Data Analytics

Author: Chandan K. Reddy

Publisher: CRC Press

Published: 2015-06-23

Total Pages: 756

ISBN-13: 148223212X

DOWNLOAD EBOOK

At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available


Big Data Analytics in Healthcare

Big Data Analytics in Healthcare

Author: Anand J. Kulkarni

Publisher: Springer Nature

Published: 2019-10-01

Total Pages: 193

ISBN-13: 3030316726

DOWNLOAD EBOOK

This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.


Analytics in Healthcare

Analytics in Healthcare

Author: Christo El Morr

Publisher: Springer

Published: 2019-01-21

Total Pages: 113

ISBN-13: 3030045064

DOWNLOAD EBOOK

This book offers a practical introduction to healthcare analytics that does not require a background in data science or statistics. It presents the basics of data, analytics and tools and includes multiple examples of their applications in the field. The book also identifies practical challenges that fuel the need for analytics in healthcare as well as the solutions to address these problems. In the healthcare field, professionals have access to vast amount of data in the form of staff records, electronic patient record, clinical findings, diagnosis, prescription drug, medical imaging procedure, mobile health, resources available, etc. Managing the data and analyzing it to properly understand it and use it to make well-informed decisions can be a challenge for managers and health care professionals. A new generation of applications, sometimes referred to as end-user analytics or self-serve analytics, are specifically designed for non-technical users such as managers and business professionals. The ability to use these increasingly accessible tools with the abundant data requires a basic understanding of the core concepts of data, analytics, and interpretation of outcomes. This book is a resource for such individuals to demystify and learn the basics of data management and analytics for healthcare, while also looking towards future directions in the field.


Healthcare Data Analytics and Management

Healthcare Data Analytics and Management

Author: Nilanjan Dey

Publisher: Academic Press

Published: 2018-11-15

Total Pages: 342

ISBN-13: 0128156368

DOWNLOAD EBOOK

Healthcare Data Analytics and Management help readers disseminate cutting-edge research that delivers insights into the analytic tools, opportunities, novel strategies, techniques and challenges for handling big data, data analytics and management in healthcare. As the rapidly expanding and heterogeneous nature of healthcare data poses challenges for big data analytics, this book targets researchers and bioengineers from areas of machine learning, data mining, data management, and healthcare providers, along with clinical researchers and physicians who are interested in the management and analysis of healthcare data. - Covers data analysis, management and security concepts and tools in the healthcare domain - Highlights electronic medical health records and patient information records - Discusses the different techniques to integrate Big data and Internet-of-Things in healthcare, including machine learning and data mining - Includes multidisciplinary contributions in relation to healthcare applications and challenges


Data Analytics in Medicine

Data Analytics in Medicine

Author: Information Resources Management Association

Publisher: Medical Information Science Reference

Published: 2019-11-18

Total Pages: 2250

ISBN-13: 9781799812043

DOWNLOAD EBOOK

""This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations"--


IoT-Based Data Analytics for the Healthcare Industry

IoT-Based Data Analytics for the Healthcare Industry

Author: Sanjay Kumar Singh

Publisher: Academic Press

Published: 2020-11-07

Total Pages: 342

ISBN-13: 0128214767

DOWNLOAD EBOOK

IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. - Provides state-of-art methods and current trends in data analytics for the healthcare industry - Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques - Discusses several potential AI techniques developed using IoT for the healthcare industry - Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages


Big Data Analytics and Intelligence

Big Data Analytics and Intelligence

Author: Poonam Tanwar

Publisher: Emerald Group Publishing

Published: 2020-09-30

Total Pages: 392

ISBN-13: 1839090995

DOWNLOAD EBOOK

Big Data Analytics and Intelligence is essential reading for researchers and experts working in the fields of health care, data science, analytics, the internet of things, and information retrieval.


Data Analytics in Biomedical Engineering and Healthcare

Data Analytics in Biomedical Engineering and Healthcare

Author: Kun Chang Lee

Publisher: Academic Press

Published: 2020-10-18

Total Pages: 298

ISBN-13: 0128193158

DOWNLOAD EBOOK

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks


Exploratory Data Analytics for Healthcare

Exploratory Data Analytics for Healthcare

Author: R. Lakshmana Kumar

Publisher: CRC Press

Published: 2021-12-23

Total Pages: 307

ISBN-13: 1000527018

DOWNLOAD EBOOK

Exploratory data analysis helps to recognize natural patterns hidden in the data. This book describes the tools for hypothesis generation by visualizing data through graphical representation and provides insight into advanced analytics concepts in an easy way. The book addresses the complete data visualization technologies workflow, explores basic and high-level concepts of computer science and engineering in medical science, and provides an overview of the clinical scientific research areas that enables smart diagnosis equipment. It will discuss techniques and tools used to explore large volumes of medical data and offers case studies that focus on the innovative technological upgradation and challenges faced today. The primary audience for the book includes specialists, researchers, graduates, designers, experts, physicians, and engineers who are doing research in this domain.