Cyclic Division Algebras

Cyclic Division Algebras

Author: Frdrique Oggier

Publisher: Now Publishers Inc

Published: 2007

Total Pages: 109

ISBN-13: 1601980507

DOWNLOAD EBOOK

Multiple antennas at both the transmitter and receiver ends of a wireless digital transmission channel may increase both data rate and reliability. Reliable high rate transmission over such channels can only be achieved through Space-Time coding. Rank and determinant code design criteria have been proposed to enhance diversity and coding gain. The special case of full-diversity criterion, requires that the difference of any two distinct codewords has full rank. Extensive work has been done on Space-Time coding, aiming to attain fully diverse codes with high rate. Division algebras have been proposed as a new tool for constructing Space-Time codes, since they are non-commutative algebras that naturally yield linear fully diverse codes. Their algebraic properties can thus be further exploited to improve the design of good codes. Cyclic Division Algebras: A Tool for Space-Time Coding provides a tutorial introduction to the algebraic tools involved in the design of codes based on division algebras. The different design criteria involved are illustrated, including the constellation shaping, the information lossless property, the non-vanishing determinant property and the diversity multiplexing tradeoff. Finally complete mathematical background underlying the construction of the Golden code and the other Perfect Space-Time block codes is given. Cyclic Division Algebras: A Tool for Space-Time Coding is for students, researchers and professionals working on wireless communication systems.


Finite-Dimensional Division Algebras over Fields

Finite-Dimensional Division Algebras over Fields

Author: Nathan Jacobson

Publisher: Springer Science & Business Media

Published: 2009-12-09

Total Pages: 290

ISBN-13: 3642024297

DOWNLOAD EBOOK

Here, the eminent algebraist, Nathan Jacobsen, concentrates on those algebras that have an involution. Although they appear in many contexts, these algebras first arose in the study of the so-called "multiplication algebras of Riemann matrices". Of particular interest are the Jordan algebras determined by such algebras, and thus their structure is discussed in detail. Two important concepts also dealt with are the universal enveloping algebras and the reduced norm. However, the largest part of the book is the fifth chapter, which focuses on involutorial simple algebras of finite dimension over a field.


Structure of Algebras

Structure of Algebras

Author: Abraham Adrian Albert

Publisher: American Mathematical Soc.

Published: 1939-12-31

Total Pages: 224

ISBN-13: 0821810243

DOWNLOAD EBOOK

The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI consists of the study of the abelian group of cyclic systems which is applied in Chapter VII to yield the theory of the structure of direct products of cyclic algebras and the consequent properties of norms in cyclic fields. This chapter is closed with the theory of $p$-algebras. In Chapter VIII an exposition is given of the theory of the representations of algebras. The treatment is somewhat novel in that while the recent expositions have used representation theorems to obtain a number of results on algebras, here the theorems on algebras are themselves used in the derivation of results on representations. The presentation has its inspiration in the author's work on the theory of Riemann matrices and is concluded by the introduction to the generalization (by H. Weyl and the author) of that theory. The theory of involutorial simple algebras is derived in Chapter X both for algebras over general fields and over the rational field. The results are also applied in the determination of the structure of the multiplication algebras of all generalized Riemann matrices, a result which is seen in Chapter XI to imply a complete solution of the principal problem on Riemann matrices.


Quaternion Algebras

Quaternion Algebras

Author: John Voight

Publisher: Springer Nature

Published: 2021-06-28

Total Pages: 877

ISBN-13: 3030566943

DOWNLOAD EBOOK

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.


Handbook of Algebra

Handbook of Algebra

Author: M. Hazewinkel

Publisher: Elsevier

Published: 2006-05-30

Total Pages: 543

ISBN-13: 0080462499

DOWNLOAD EBOOK

Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source for information- Provides in-depth coverage of new topics in algebra- Includes references to relevant articles, books and lecture notes


Associative Algebras

Associative Algebras

Author: R.S. Pierce

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 448

ISBN-13: 1475701632

DOWNLOAD EBOOK

For many people there is life after 40; for some mathematicians there is algebra after Galois theory. The objective ofthis book is to prove the latter thesis. It is written primarily for students who have assimilated substantial portions of a standard first year graduate algebra textbook, and who have enjoyed the experience. The material that is presented here should not be fatal if it is swallowed by persons who are not members of that group. The objects of our attention in this book are associative algebras, mostly the ones that are finite dimensional over a field. This subject is ideal for a textbook that will lead graduate students into a specialized field of research. The major theorems on associative algebras inc1ude some of the most splendid results of the great heros of algebra: Wedderbum, Artin, Noether, Hasse, Brauer, Albert, Jacobson, and many others. The process of refine ment and c1arification has brought the proof of the gems in this subject to a level that can be appreciated by students with only modest background. The subject is almost unique in the wide range of contacts that it makes with other parts of mathematics. The study of associative algebras con tributes to and draws from such topics as group theory, commutative ring theory, field theory, algebraic number theory, algebraic geometry, homo logical algebra, and category theory. It even has some ties with parts of applied mathematics.


Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula

Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula

Author: James Arthur

Publisher: Princeton University Press

Published: 1989-06-21

Total Pages: 252

ISBN-13: 9780691085180

DOWNLOAD EBOOK

A general principle, discovered by Robert Langlands and named by him the "functoriality principle," predicts relations between automorphic forms on arithmetic subgroups of different reductive groups. Langlands functoriality relates the eigenvalues of Hecke operators acting on the automorphic forms on two groups (or the local factors of the "automorphic representations" generated by them). In the few instances where such relations have been probed, they have led to deep arithmetic consequences. This book studies one of the simplest general problems in the theory, that of relating automorphic forms on arithmetic subgroups of GL(n,E) and GL(n,F) when E/F is a cyclic extension of number fields. (This is known as the base change problem for GL(n).) The problem is attacked and solved by means of the trace formula. The book relies on deep and technical results obtained by several authors during the last twenty years. It could not serve as an introduction to them, but, by giving complete references to the published literature, the authors have made the work useful to a reader who does not know all the aspects of the theory of automorphic forms.


Value Functions on Simple Algebras, and Associated Graded Rings

Value Functions on Simple Algebras, and Associated Graded Rings

Author: Jean-Pierre Tignol

Publisher: Springer

Published: 2015-04-03

Total Pages: 652

ISBN-13: 3319163604

DOWNLOAD EBOOK

This monograph is the first book-length treatment of valuation theory on finite-dimensional division algebras, a subject of active and substantial research over the last forty years. Its development was spurred in the last decades of the twentieth century by important advances such as Amitsur's construction of non crossed products and Platonov's solution of the Tannaka-Artin problem. This study is particularly timely because it approaches the subject from the perspective of associated graded structures. This new approach has been developed by the authors in the last few years and has significantly clarified the theory. Various constructions of division algebras are obtained as applications of the theory, such as noncrossed products and indecomposable algebras. In addition, the use of valuation theory in reduced Whitehead group calculations (after Hazrat and Wadsworth) and in essential dimension computations (after Baek and Merkurjev) is showcased. The intended audience consists of graduate students and research mathematicians.


Collected Mathematical Papers: Associative algebras and Riemann matrices

Collected Mathematical Papers: Associative algebras and Riemann matrices

Author: Abraham Adrian Albert

Publisher: American Mathematical Soc.

Published:

Total Pages: 824

ISBN-13: 9780821870556

DOWNLOAD EBOOK

This book contains the collected works of A. Adrian Albert, a leading algebraist of the twentieth century. Albert made many important contributions to the theory of the Brauer group and central simple algeras, Riemann matrices, nonassociative algebras and other topics. Part 1 focuses on associative algebras and Riemann matrices part 2 on nonassociative algebras and miscellany. Because much of Albert's work remains of vital interest in contemporary research, this volume will interst mathematicians in a variety of areas.


Applied Algebra, Algebraic Algorithms and Error-Correcting Codes

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes

Author: Serdar Boztas

Publisher: Springer

Published: 2007-11-29

Total Pages: 379

ISBN-13: 3540772243

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 17th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-17, held in Bangalore, India, in December 2007. Among the subjects addressed are block codes, including list-decoding algorithms; algebra and codes: rings, fields, algebraic geometry codes; algebra: rings and fields, polynomials, permutations, lattices; cryptography: cryptanalysis and complexity; computational algebra.