Cyber-Physical Systems of Systems

Cyber-Physical Systems of Systems

Author: Andrea Bondavalli

Publisher: Springer

Published: 2016-12-16

Total Pages: 270

ISBN-13: 3319475908

DOWNLOAD EBOOK

This book is open access under a CC BY 4.0 license. Technical Systems-of-Systems (SoS) – in the form of networked, independent constituent computing systems temporarily collaborating to achieve a well-defined objective – form the backbone of most of today’s infrastructure. The energy grid, most transportation systems, the global banking industry, the water-supply system, the military equipment, many embedded systems, and a great number more, strongly depend on systems-of-systems. The correct operation and continuous availability of these underlying systems-of-systems are fundamental for the functioning of our modern society. The 8 papers presented in this book document the main insights on Cyber-Physical System of Systems (CPSoSs) that were gained during the work in the FP7-610535 European Research Project AMADEOS (acronym for Architecture for Multi-criticality Agile Dependable Evolutionary Open System-of-Systems). It is the objective of this book to present, in a single consistent body, the foundational concepts and their relationships. These form a conceptual basis for the description and understanding of SoSs and go deeper in what we consider the characterizing and distinguishing elements of SoSs: time, emergence, evolution and dynamicity.


Cyber-Physical Systems: A Model-Based Approach

Cyber-Physical Systems: A Model-Based Approach

Author: Walid M. Taha

Publisher: Springer Nature

Published: 2020-09-01

Total Pages: 205

ISBN-13: 3030360717

DOWNLOAD EBOOK

In this concise yet comprehensive Open Access textbook, future inventors are introduced to the key concepts of Cyber-Physical Systems (CPS). Using modeling as a way to develop deeper understanding of the computational and physical components of these systems, one can express new designs in a way that facilitates their simulation, visualization, and analysis. Concepts are introduced in a cross-disciplinary way. Leveraging hybrid (continuous/discrete) systems as a unifying framework and Acumen as a modeling environment, the book bridges the conceptual gap in modeling skills needed for physical systems on the one hand and computational systems on the other. In doing so, the book gives the reader the modeling and design skills they need to build smart, IT-enabled products. Starting with a look at various examples and characteristics of Cyber-Physical Systems, the book progresses to explain how the area brings together several previously distinct ones such as Embedded Systems, Control Theory, and Mechatronics. Featuring a simulation-based project that focuses on a robotics problem (how to design a robot that can play ping-pong) as a useful example of a CPS domain, Cyber-Physical Systems: A Model-Based Approach demonstrates the intimate coupling between cyber and physical components, and how designing robots reveals several non-trivial control problems, significant embedded and real-time computation requirements, and a need to consider issues of communication and preconceptions.


Principles of Cyber-Physical Systems

Principles of Cyber-Physical Systems

Author: Rajeev Alur

Publisher: MIT Press

Published: 2015-04-24

Total Pages: 459

ISBN-13: 0262328461

DOWNLOAD EBOOK

A foundational text that offers a rigorous introduction to the principles of design, specification, modeling, and analysis of cyber-physical systems. A cyber-physical system consists of a collection of computing devices communicating with one another and interacting with the physical world via sensors and actuators in a feedback loop. Increasingly, such systems are everywhere, from smart buildings to medical devices to automobiles. This textbook offers a rigorous and comprehensive introduction to the principles of design, specification, modeling, and analysis of cyber-physical systems. The book draws on a diverse set of subdisciplines, including model-based design, concurrency theory, distributed algorithms, formal methods of specification and verification, control theory, real-time systems, and hybrid systems, explaining the core ideas from each that are relevant to system design and analysis. The book explains how formal models provide mathematical abstractions to manage the complexity of a system design. It covers both synchronous and asynchronous models for concurrent computation, continuous-time models for dynamical systems, and hybrid systems for integrating discrete and continuous evolution. The role of correctness requirements in the design of reliable systems is illustrated with a range of specification formalisms and the associated techniques for formal verification. The topics include safety and liveness requirements, temporal logic, model checking, deductive verification, stability analysis of linear systems, and real-time scheduling algorithms. Principles of modeling, specification, and analysis are illustrated by constructing solutions to representative design problems from distributed algorithms, network protocols, control design, and robotics. This book provides the rapidly expanding field of cyber-physical systems with a long-needed foundational text by an established authority. It is suitable for classroom use or as a reference for professionals.


Cyber-Physical Systems

Cyber-Physical Systems

Author: Fei Hu

Publisher: CRC Press

Published: 2013-09-26

Total Pages: 400

ISBN-13: 1466577002

DOWNLOAD EBOOK

Cyber-physical systems (CPSs) have quickly become one of the hottest computer applications today. With their tight integration of cyber and physical objects, it is believed CPSs will transform how we interact with the physical world, just like the Internet transformed how we interact with one another. A CPS could be a system at multiple scales, from large smart bridges with fluctuation detection and responding functions, to autonomous cars and tiny implanted medical devices. Cyber-Physical Systems: Integrated Computing and Engineering Design supplies comprehensive coverage of the principles and design of CPSs. It addresses the many challenges that must be overcome and outlines a roadmap of how to get there. Emphasizes the integration of cyber computing and physical objects control Covers important CPS theory foundations and models Includes interesting case studies of several important civilian and health care applications that illustrate the CPS design process Addresses the collaboration of the sensing and controlling of a physical system with robust software architecture Explains how to account for random failure events that can occur in a real CPS environment Presented in a systematic manner, the book begins by discussing the basic concept underlying CPSs and examining some challenging design issues. It then covers the most important design theories and modeling methods for a practical CPS. Next, it moves on to sensor-based CPSs, which use embedded sensors and actuators to interact with the physical world. The text presents concrete CPS designs for popular civilian applications, including building and energy management. Reflecting the importance of human health care in society, it includes CPS examples of rehabilitation applications such as virtual reality-based disability recovery platforms.


Control of Cyber-Physical Systems

Control of Cyber-Physical Systems

Author: Danielle C. Tarraf

Publisher: Springer

Published: 2013-06-30

Total Pages: 379

ISBN-13: 3319011596

DOWNLOAD EBOOK

Cyber-physical systems (CPS) involve deeply integrated, tightly coupled computational and physical components. These systems, spanning multiple scientific and technological domains, are highly complex and pose several fundamental challenges. They are also critically important to society’s advancement and security. The design and deployment of the adaptable, reliable CPS of tomorrow requires the development of a basic science foundation, synergistically drawing on various branches of engineering, mathematics, computer science, and domain specific knowledge. This book brings together 19 invited papers presented at the Workshop on Control of Cyber-Physical Systems, hosted by the Department of Electrical & Computer Engineering at The Johns Hopkins University in March 2013. It highlights the central role of control theory and systems thinking in developing the theory of CPS, in addressing the challenges of cyber-trust and cyber-security, and in advancing emerging cyber-physical applications ranging from smart grids to smart buildings, cars and robotic systems.


Verifying Cyber-Physical Systems

Verifying Cyber-Physical Systems

Author: Sayan Mitra

Publisher: MIT Press

Published: 2021-02-16

Total Pages: 313

ISBN-13: 0262044803

DOWNLOAD EBOOK

A graduate-level textbook that presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification. Verification aims to establish whether a system meets a set of requirements. For such cyber-physical systems as driverless cars, autonomous spacecraft, and air-traffic management systems, verification is key to building safe systems with high levels of assurance. This graduate-level textbook presents a unified mathematical framework for modeling and analyzing cyber-physical systems, with a strong focus on verification. It distills the ideas and algorithms that have emerged from more than three decades of research and have led to the creation of industrial-scale modeling and verification techniques for cyber-physical systems.


A 21st Century Cyber-Physical Systems Education

A 21st Century Cyber-Physical Systems Education

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-01-27

Total Pages: 107

ISBN-13: 0309451639

DOWNLOAD EBOOK

Cyber-physical systems (CPS) are "engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components." CPS can be small and closed, such as an artificial pancreas, or very large, complex, and interconnected, such as a regional energy grid. CPS engineering focuses on managing inter- dependencies and impact of physical aspects on cyber aspects, and vice versa. With the development of low-cost sensing, powerful embedded system hardware, and widely deployed communication networks, the reliance on CPS for system functionality has dramatically increased. These technical developments in combination with the creation of a workforce skilled in engineering CPS will allow the deployment of increasingly capable, adaptable, and trustworthy systems. Engineers responsible for developing CPS but lacking the appropriate education or training may not fully understand at an appropriate depth, on the one hand, the technical issues associated with the CPS software and hardware or, on the other hand, techniques for physical system modeling, energy and power, actuation, signal processing, and control. In addition, these engineers may be designing and implementing life-critical systems without appropriate formal training in CPS methods needed for verification and to assure safety, reliability, and security. A workforce with the appropriate education, training, and skills will be better positioned to create and manage the next generation of CPS solutions. A 21st Century Cyber-Physical Systems Education examines the intellectual content of the emerging field of CPS and its implications for engineering and computer science education. This report is intended to inform those who might support efforts to develop curricula and materials; faculty and university administrators; industries with needs for CPS workers; and current and potential students about intellectual foundations, workforce requirements, employment opportunities, and curricular needs.


Logical Foundations of Cyber-Physical Systems

Logical Foundations of Cyber-Physical Systems

Author: André Platzer

Publisher: Springer

Published: 2018-08-31

Total Pages: 639

ISBN-13: 9783319635873

DOWNLOAD EBOOK

Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks. This textbook teaches undergraduate students the core principles behind CPSs. It shows them how to develop models and controls; identify safety specifications and critical properties; reason rigorously about CPS models; leverage multi-dynamical systems compositionality to tame CPS complexity; identify required control constraints; verify CPS models of appropriate scale in logic; and develop an intuition for operational effects. The book is supported with homework exercises, lecture videos, and slides.


Applied Cyber-Physical Systems

Applied Cyber-Physical Systems

Author: Sang C. Suh

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 257

ISBN-13: 1461473365

DOWNLOAD EBOOK

Applied Cyber-Physical Systems presents the latest methods and technologies in the area of cyber-physical systems including medical and biological applications. Cyber-physical systems (CPS) integrate computing and communication capabilities by monitoring, and controlling the physical systems via embedded hardware and computers. This book brings together unique contributions from renowned experts on cyber-physical systems research and education with applications. It also addresses the major challenges in CPS, and then provides a resolution with various diverse applications as examples. Advanced-level students and researchers focused on computer science, engineering and biomedicine will find this to be a useful secondary text book or reference, as will professionals working in this field.


Cyber-Physical Systems

Cyber-Physical Systems

Author: Houbing Herbert Song

Publisher: Morgan Kaufmann

Published: 2016-08-27

Total Pages: 516

ISBN-13: 0128038748

DOWNLOAD EBOOK

Cyber-Physical Systems: Foundations, Principles and Applications explores the core system science perspective needed to design and build complex cyber-physical systems. Using Systems Science's underlying theories, such as probability theory, decision theory, game theory, organizational sociology, behavioral economics, and cognitive psychology, the book addresses foundational issues central across CPS applications, including System Design -- How to design CPS to be safe, secure, and resilient in rapidly evolving environments, System Verification -- How to develop effective metrics and methods to verify and certify large and complex CPS, Real-time Control and Adaptation -- How to achieve real-time dynamic control and behavior adaptation in a diverse environments, such as clouds and in network-challenged spaces, Manufacturing -- How to harness communication, computation, and control for developing new products, reducing product concepts to realizable designs, and producing integrated software-hardware systems at a pace far exceeding today's timeline. The book is part of the Intelligent Data-Centric Systems: Sensor-Collected Intelligence series edited by Fatos Xhafa, Technical University of Catalonia. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Includes in-depth coverage of the latest models and theories that unify perspectives, expressing the interacting dynamics of the computational and physical components of a system in a dynamic environment - Focuses on new design, analysis, and verification tools that embody the scientific principles of CPS and incorporate measurement, dynamics, and control - Covers applications in numerous sectors, including agriculture, energy, transportation, building design and automation, healthcare, and manufacturing