CVD growth of SiC for high-power and high-frequency applications

CVD growth of SiC for high-power and high-frequency applications

Author: Robin Karhu

Publisher: Linköping University Electronic Press

Published: 2019-02-14

Total Pages: 55

ISBN-13: 9176851494

DOWNLOAD EBOOK

Silicon Carbide (SiC) is a wide bandgap semiconductor that has attracted a lot of interest for electronic applications due to its high thermal conductivity, high saturation electron drift velocity and high critical electric field strength. In recent years commercial SiC devices have started to make their way into high and medium voltage applications. Despite the advancements in SiC growth over the years, several issues remain. One of these issues is that the bulk grown SiC wafers are not suitable for electronic applications due to the high background doping and high density of basal plane dislocations (BPD). Due to these problems SiC for electronic devices must be grown by homoepitaxy. The epitaxial growth is performed in chemical vapor deposition (CVD) reactors. In this work, growth has been performed in a horizontal hot-wall CVD (HWCVD) reactor. In these reactors it is possible to produce high-quality SiC epitaxial layers within a wide range of doping, both n- and p-type. SiC is a well-known example of polytypism, where the different polytypes exist as different stacking sequences of the Si-C bilayers. Polytypism makes polytype stability a problem during growth of SiC. To maintain polytype stability during homoepitaxy of the hexagonal polytypes the substrates are usually cut so that the angle between the surface normal and the c-axis is a few degrees, typically 4 or 8°. The off-cut creates a high density of micro-steps at the surface. These steps allow for the replication of the substrates polytype into the growing epitaxial layer, the growth will take place in a step-flow manner. However, there are some drawbacks with step-flow growth. One is that BPDs can replicate from the substrate into the epitaxial layer. Another problem is that 4H-SiC is often used as a substrate for growth of GaN epitaxial layers. The epitaxial growth of GaN has been developed on on-axis substrates (surface normal coincides with c-axis), so epitaxial 4H-SiC layers grown on off-axis substrates cannot be used as substrates for GaN epitaxial growth. In efforts to solve the problems with off-axis homoepitaxy of 4H-SiC, on-axis homoepitaxy has been developed. In this work, further development of wafer-scale on-axis homoepitaxy has been made. This development has been made on a Si-face of 4H-SiC substrates. The advances include highly resistive epilayers grown on on-axis substrates. In this thesis the ability to control the surface morphology of epitaxial layers grown on on-axis homoepitaxy is demonstrated. This work also includes growth of isotopically enriched 4H-SiC on on-axis substrates, this has been done to increase the thermal conductivity of the grown epitaxial layers. In (paper 1) on-axis homoepitaxy of 4H-SiC has been developed on 100 mm diameter substrates. This paper also contains comparisons between different precursors. In (paper 2) we have further developed on-axis homoepitaxy on 100 mm diameter wafers, by doping the epitaxial layers with vanadium. The vanadium doping of the epitaxial layers makes the layers highly resistive and thus suitable to use as a substrate for III-nitride growth. In (paper 3) we developed a method to control the surface morphology and reduce the as-grown surface roughness in samples grown on on-axis substrates. In (paper 4) we have increased the thermal conductivity of 4H-SiC epitaxial layers by growing the layers using isotopically enriched precursors. In (paper 5) we have investigated the role chlorine have in homoepitaxial growth of 4H-SiC. In (paper 6) we have investigated the charge carrier lifetime in as-grown samples and traced variations in lifetime to structural defects in the substrate. In (paper 7) we have investigated the formation mechanism of a morphological defect in homoepitaxial grown 4H-SiC.


Fundamentals of Silicon Carbide Technology

Fundamentals of Silicon Carbide Technology

Author: Tsunenobu Kimoto

Publisher: John Wiley & Sons

Published: 2014-09-23

Total Pages: 565

ISBN-13: 1118313550

DOWNLOAD EBOOK

A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.


Silicon Carbide

Silicon Carbide

Author: Wolfgang J. Choyke

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 911

ISBN-13: 3642188702

DOWNLOAD EBOOK

Since the 1997 publication of "Silicon Carbide - A Review of Fundamental Questions and Applications to Current Device Technology" edited by Choyke, et al., there has been impressive progress in both the fundamental and developmental aspects of the SiC field. So there is a growing need to update the scientific community on the important events in research and development since then. The editors have again gathered an outstanding team of the world's leading SiC researchers and design engineers to write on the most recent developments in SiC.


Fundamentals of Silicon Carbide Technology

Fundamentals of Silicon Carbide Technology

Author: Tsunenobu Kimoto

Publisher: John Wiley & Sons

Published: 2014-11-24

Total Pages: 565

ISBN-13: 1118313526

DOWNLOAD EBOOK

A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.


SiC Materials and Devices

SiC Materials and Devices

Author: Michael Shur

Publisher: World Scientific

Published: 2006

Total Pages: 342

ISBN-13: 9812568352

DOWNLOAD EBOOK

After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices ? power switching Schottky diodes and high temperature MESFETs ? are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology.


Sic Materials And Devices - Volume 1

Sic Materials And Devices - Volume 1

Author: Sergey Rumyantsev

Publisher: World Scientific

Published: 2006-07-25

Total Pages: 342

ISBN-13: 981447777X

DOWNLOAD EBOOK

After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices — power switching Schottky diodes and high temperature MESFETs — are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology.


Silicon Carbide and Related Materials 2012

Silicon Carbide and Related Materials 2012

Author: A.A. Lebedev

Publisher: Trans Tech Publications Ltd

Published: 2013-01-25

Total Pages: 1158

ISBN-13: 3038260053

DOWNLOAD EBOOK

Selected, peer reviewed papers from the 9th European Conference on Silicon Carbide and Related Materials (ECSCRM 2012), September 2 -6, 2012, St. Petersburg, Russian Federation