In this volume, current topics from classical large scale models to quantum gravity effects in the mathematical formulation of physically motivated cosmological theories are discussed. There are contributions dealing with topics such as the singularity theorem, the cosmic no-hair theorem and other results related to the big bang and the inflationary cosmological models. Also discussed are non-standard themes like field equations of order higher than 2, space-times of dimension different from 4, relating also to current generalizations of string theory, and some issues in quantum cosmology.
Cosmology has been transformed by dramatic progress in high-precision observations and theoretical modelling. This book surveys key developments and open issues for graduate students and researchers. Using a relativistic geometric approach, it focuses on the general concepts and relations that underpin the standard model of the Universe. Part I covers foundations of relativistic cosmology whilst Part II develops the dynamical and observational relations for all models of the Universe based on general relativity. Part III focuses on the standard model of cosmology, including inflation, dark matter, dark energy, perturbation theory, the cosmic microwave background, structure formation and gravitational lensing. It also examines modified gravity and inhomogeneity as possible alternatives to dark energy. Anisotropic and inhomogeneous models are described in Part IV, and Part V reviews deeper issues, such as quantum cosmology, the start of the universe and the multiverse proposal. Colour versions of some figures are available at www.cambridge.org/9780521381154.
Divided into four parts, this book covers recent developments in topics pertaining to gravity theories, including discussions on the presence of scalar fields. Part One is devoted to exact solutions in general relativity, and is mainly concerned with the results of rotating null dust beams and fluids. Also included is a panoramic vision of new research directions in this area, which would require revising certain theorems and their possible extensions within gravity theories, new aspects concerning the Ernst potentials, double Kerr spacetimes, and rotating configurations. In particular, there is a detailed discussion of totally symmetric and totally geodesic spaces, in which a method for generating (2+1)-dimensional solutions from (3+1)-dimensional solutions is given. Part Two deals with alternative theories of gravity, all of which include scalar fields and gauge fields. Here, quantum and cosmological effects, which arise from both gravity theories in four and higher dimensions and from metric-affine theories, are investigated. Part Three is devoted to cosmological and inflationary scenarios. Local effects, such as the influence of scalar fields in protogalactic interactions, numerical studies of the collapse of molecular cores, as well as the inverse inflationary problem and the blue eigenvalue spectrum of it, are considered. Moreover, the role of scalar fields as dark matter and quantum cosmology in the Bergman-Wagoner and Gowdy theories, together with the relation of the conformal symmetry and deflationary gas universe, are likewise presented. The last part of the book includes some mixed topics which are still in the experimental stage. Among them are the foundation of the Maxwell theory, a discussion on electromagnetic Thirring problems, a note on the staticity of black holes with non-minimally coupled scalar fields, and a study of the Lorentz force free charged fluids in general relativity. Thus, this book is the most up-to-date, comprehensive collection of papers on the subject of exact solutions and scalar fields in gravity and is a valuable tool for researchers in the area.
"It contains a large variety of approaches to different aspects of the subject and can therefore be a source of inspiration for further research".General Relativity and Gravitation, 1999
One of modern science's most famous and controversial figures, Jerzy Plebanski was an outstanding theoretical physicist and an author of many intriguing discoveries in general relativity and quantum theory. Known for his exceptional analytic talents, explosive character, inexhaustible energy, and bohemian nights with brandy, coffee, and enormous amounts of cigarettes, he was dedicated to both science and art, producing innumerable handwritten articles — resembling monk's calligraphy — as well as a collection of oil paintings.As a collaborator but also an antagonist of Leopold Infeld's (a coauthor of Albert Einstein's), Plebanski is recognized for designing the “heavenly” and “hyper-heavenly” equations, for introducing new variables to describe the gravitational field, for the exact solutions in Einstein's gravity and in quantum theory, for his classification of the tensor of matter, for some outstanding results in nonlinear electrodynamics, and for analyzing general relativity with continuous sources long before Chandrasekhar et al.A tribute to Plebański's contributions and the variety of his interests, this is a unique and wide-ranging collection of invited papers, covering gravity quantization, strings, branes, supersymmetry, ideas on the deformation quantization, and lesser known results on the continuous Baker-Campbell-Hausdorff problem.
This volume contains the proceedings of the twelfth triannual International Conference on General Relativity and Gravitation, the premier conference for presentation and discussion of new ideas in relativity and cosmology. The volume will contain the invited talks as well as short reports on the parallel workshops that took place at the meeting. It will be essential reading for all research workers in relativity, cosmology and astrophysics.
The ICGAC-12 aimed to serve as a common platform around the Asia-Pacific region for the exchange and communication among all researchers in the fields of gravitation, astrophysics and cosmology. The scope covered in the conference includes dark matter, dark energy, experimental study of gravity, black holes, quantum Yang-Mills gravity, GR extension, variation of constants, fundamental physics space projects, relativistic astrophysics, white dwarfs, neutron stars, and gamma ray bursts.
The nature of time has long puzzled physicists and philosophers. Time potentially has very fundamental yet unknown properties. In 1993 a new model of multi-dimensional time was found to relate closely to properties of the cosmological redshift. An international conference was subsequently convened in April 1996 to examine past, current and new concepts of time as they relate to physics and cosmology. These proceedings incorporate 34 reviews and contributed papers from the conference. The major reviews include observational properties of the redshift, alternative cosmologies, critical problems in cosmology, alternative viewpoints and problems in gravitation theory and particle physics, and new approaches to mathematical models of time. Professionals and students with an interest in cosmology and the structure of the universe will find that this book raises critical problems and explores challenging alternatives to classical viewpoints.