Current Topics in iPSCs provides a deep analysis of the underlying fundamentals that support short and mid-term developments and milestones in the business of mesenchymal stem cell therapies. This volume explores the next frontier of MSC therapies and how the transformational potential of therapeutic adult cells will be realised in all therapy areas. The impacts of clinical and economic benefits are dissected throughout each of the chapters. Written by thought leaders in the field for those curious about the interface of science and business. - Explores the strategy at the forefront of the science of mesenchymal stem cells - Provides an overview of all therapy areas where MSC and MSC-derived products can be used therapeutically - Depicts transformational changes in healthcare that enable the implementation of MSC-powered technology platforms
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology. Current Progress in iPSC-derived Cell Types, Volume 10 addresses how induced pluripotent stem cells can be differentiated into different cell types. Somatic cells can be reprogrammed into induced pluripotent stem cells by the expression of specific transcription factors. These cells have been transforming biomedical research over the last 15 years. This volume will address the advances in research of how research of induced pluripotent stem cells can be reprogrammed to develop new treatment technologies in regenerative medicine. The volume is written for researchers and scientists in stem cell therapy, cell biology, regenerative medicine and organ transplantation; and is contributed by world-renowned authors in the field. Provides overview of the fast-moving field of stem cell biology and function, regenerative medicine and therapeutics Covers iPSCs derived cardiomyocytes, skeletal muscles, brown adipocytes, airway epithelial cells, and much more Contributed by world-renown experts in the field
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology.Molecular Players in iPSC Technology, Volume 12 addresses the molecular players underlying induced pluripotent stem cell (iPSC) generation, maintenance, expansion, and differentiation. The discovery of iPSCs revolutionized biomedical research. iPSC technology involves multiple molecular mechanisms. This volume covers exosomal microRNAs, auxiliary pluripotency-associated genes, inducible caspase-9 suicide gene, cell cycle proteins, ion channels, Notch signaling, kinase signaling, SOCS3/JAK2/STAT3 pathway, NANOG, Krüppel-like factors, H1FOO, and much more in iPSCs. The volume is written for researchers and scientists in stem cell therapy, cellular and molecular biology, and regenerative medicine and is contributed by world-renowned authors in the field. Provides overview of the fast-moving field of iPSC technology, regenerative medicine, and therapeutics Covers the different key molecular players involved in iPSC formation, maintenance, expansion, and differentiation Is contributed by world-renowned experts in the field
Current Topics in iPSCs provides a deep analysis of the underlying fundamentals that support short and mid-term developments and milestones in the business of mesenchymal stem cell therapies. This volume explores the next frontier of MSC therapies and how the transformational potential of therapeutic adult cells will be realised in all therapy areas. The impacts of clinical and economic benefits are dissected throughout each of the chapters. Written by thought leaders in the field for those curious about the interface of science and business. Explores the strategy at the forefront of the science of mesenchymal stem cells Provides an overview of all therapy areas where MSC and MSC-derived products can be used therapeutically Depicts transformational changes in healthcare that enable the implementation of MSC-powered technology platforms
Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.
Progenitor and stem cells have the ability to renew themselves and change into a variety of specialised types, making them ideal materials for therapy and regenerative medicine. Progenitor and stem cell technologies and therapies reviews the range of progenitor and stem cells available and their therapeutic application.Part one reviews basic principles for the culture of stem cells before discussing technologies for particular cell types. These include human embryonic, induced pluripotent, amniotic and placental, cord and multipotent stem cells. Part two discusses wider issues such as intellectual property, regulation and commercialisation of stem cell technologies and therapies. The final part of the book considers the therapeutic use of stem and progenitor cells. Chapters review the use of adipose tissue-derived stem cells, umbilical cord blood (UCB) stem cells, bone marrow, auditory and oral cavity stem cells. Other chapters cover the use of stem cells in therapies in various clinical areas, including lung, cartilage, urologic, nerve and cardiac repair.With its distinguished editor and international team of contributors, Progenitor and stem cell technologies and therapies is a standard reference for both those researching in cell and tissue biology and engineering as well as medical practitioners investigating the therapeutic use of this important technology. - Reviews the range of progenitor and stem cells available and outlines their therapeutic application - Examines the basic principles for the culture of stem cells before discussing technologies for particular cell types, including human embryonic, induced pluripotent, amniotic and placental, cord and multipotent stem cells - Includes a discussion of wider issues such as intellectual property, regulation and commercialisation of stem cell technologies and therapies
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology.Recent Advances in iPSC Technology, Volume 5 addresses the progress in induced pluripotent stem cells (iPSCs) technologies.Somatic cells can be reprogrammed into iPSCs by the expression of specific transcription factors. These cells are transforming biomedical research in the last 15 years. The volume teaches readers about current advances in the field. This book describes different technologies and strategies to use iPSCs for biological and clinical benefit. In recent years, remarkable progress has been made in the obtention of iPSCs and their differentiation into several cell types, tissues, and organs using state-of-the-art techniques. These advantages facilitated identification of key targets and definition of the molecular basis of several disorders. This volume will cover hot topics in the iPSC field, such as iPSCs for modeling the cardiovascular toxicities of anticancer therapies, iPSC differentiation through the lens of the noncoding genome, modeling of blood–brain barrier with iPSCs, mathematical modeling of iPSCs, iPSCs to study human brain evolution, selfrenewal in iPSCs, differences and similarities between iPSCs and embryonic stem cells, and more.The volume is written for researchers and scientists interested in stem cell therapy, cell biology, regenerative medicine, and organ transplantation and is contributed by world-renowned authors in the field. - Provides overview of the fast-moving field of induced pluripotent stem cell technology, regenerative medicine, and therapeutics - Covers the following topics: iPSCs for modeling the cardiovascular toxicities of anticancer therapies, iPSC differentiation through the lens of the non-coding genome, modeling of blood-brain barrier with iPSCs, mathematical modelling of iPSCs, iPSCs to study human brain evolution, self-renewal in iPSCs, differences and similarities between iPSCs and embryonic stem cells, and more - Contributed by world-renown experts in the field
A discussion of all the key issues in the use of human pluripotent stem cells for treating degenerative diseases or for replacing tissues lost from trauma. On the practical side, the topics range from the problems of deriving human embryonic stem cells and driving their differentiation along specific lineages, regulating their development into mature cells, and bringing stem cell therapy to clinical trials. Regulatory issues are addressed in discussions of the ethical debate surrounding the derivation of human embryonic stem cells and the current policies governing their use in the United States and abroad, including the rules and conditions regulating federal funding and questions of intellectual property.
This textbook covers the basic aspects of stem cell research and applications in regenerative medicine. Each chapter includes a didactic component and a practical section. The book offers readers insights into: How to identify the basic concepts of stem cell biology and the molecular regulation of pluripotency and stem cell development. How to produce induced pluripotent stem cells (iPSCs) and the basics of transfection. The biology of adult stem cells, with particular emphasis on mesenchymal stromal cells and hematopoietic stem cells, and the basic mechanisms that regulate them. How cancer stem cells arise and metastasize, and their properties. How to develop the skills needed to isolate, differentiate and characterize adult stem The clinical significance of stem cell research and the potential problems that need to be overcome. Evaluating the use of stem cells for tissue engineering and therapies (the amniotic membrane) The applications of bio-nanotechnology in stem cell research. How epigenetic mechanisms, including various DNA modifications and histone dynamics, are involved in regulating the potentiality and differentiation of stem cells. The scientific methods, ethical considerations and implications of stem cell research.
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology. Methods in iPSC Technology, Volume 9 addresses the different methods used for induced pluripotent stem cell (iPSC) formation, maintenance, expansion, and differentiation. The ability to reprogram different cell types to iPSCs offers an opportunity to generate pluripotent patient-specific cell lines that can help in the understanding of multiple human disorders. This volume addresses a variety of current methods used in the generation and manipulation of iPSCs, such as magnetic nanoparticles, piggyBac vectors, lentiviral vectors, bioscaffolds, somatic cell nuclear transfer, CRISPR/Cas9, bacteria, and much more. This volume is written for researchers and scientists interested in stem cell therapy, cell biology, regenerative medicine, and organ transplantation and is contributed by world-renowned authors in the field. - Provides overview of the fast-moving field of stem cell biology and function, regenerative medicine, and therapeutics - Covers the different methods used for iPSC formation, maintenance, expansion, and differentiation - Is contributed by world-renowned experts in the field