This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Our first Research Topic entitled “Current and Future Role of Artificial Intelligence in Cardiac Imaging” provided comprehensive reviews of the recent advances and potential impact of AI for a range of cardiac imaging applications and remains available as an e-book to download at no cost. Since this first set of publications, the field has moved at pace and it is timely to now invite further up-to-date and topical reviews but importantly original research articles via our Research Topic “Current and Future Role of Artificial Intelligence in Cardiac Imaging 2.0”.
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Machine Learning in Cardiovascular Medicine addresses the ever-expanding applications of artificial intelligence (AI), specifically machine learning (ML), in healthcare and within cardiovascular medicine. The book focuses on emphasizing ML for biomedical applications and provides a comprehensive summary of the past and present of AI, basics of ML, and clinical applications of ML within cardiovascular medicine for predictive analytics and precision medicine. It helps readers understand how ML works along with its limitations and strengths, such that they can could harness its computational power to streamline workflow and improve patient care. It is suitable for both clinicians and engineers; providing a template for clinicians to understand areas of application of machine learning within cardiovascular research; and assist computer scientists and engineers in evaluating current and future impact of machine learning on cardiovascular medicine. Provides an overview of machine learning, both for a clinical and engineering audience Summarize recent advances in both cardiovascular medicine and artificial intelligence Discusses the advantages of using machine learning for outcomes research and image processing Addresses the ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach
The Smart Cyber Ecosystem for Sustainable Development As the entire ecosystem is moving towards a sustainable goal, technology driven smart cyber system is the enabling factor to make this a success, and the current book documents how this can be attained. The cyber ecosystem consists of a huge number of different entities that work and interact with each other in a highly diversified manner. In this era, when the world is surrounded by many unseen challenges and when its population is increasing and resources are decreasing, scientists, researchers, academicians, industrialists, government agencies and other stakeholders are looking toward smart and intelligent cyber systems that can guarantee sustainable development for a better and healthier ecosystem. The main actors of this cyber ecosystem include the Internet of Things (IoT), artificial intelligence (AI), and the mechanisms providing cybersecurity. This book attempts to collect and publish innovative ideas, emerging trends, implementation experiences, and pertinent user cases for the purpose of serving mankind and societies with sustainable societal development. The 22 chapters of the book are divided into three sections: Section I deals with the Internet of Things, Section II focuses on artificial intelligence and especially its applications in healthcare, whereas Section III investigates the different cyber security mechanisms. Audience This book will attract researchers and graduate students working in the areas of artificial intelligence, blockchain, Internet of Things, information technology, as well as industrialists, practitioners, technology developers, entrepreneurs, and professionals who are interested in exploring, designing and implementing these technologies.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Medical Imaging Informatics provides an overview of this growing discipline, which stems from an intersection of biomedical informatics, medical imaging, computer science and medicine. Supporting two complementary views, this volume explores the fundamental technologies and algorithms that comprise this field, as well as the application of medical imaging informatics to subsequently improve healthcare research. Clearly written in a four part structure, this introduction follows natural healthcare processes, illustrating the roles of data collection and standardization, context extraction and modeling, and medical decision making tools and applications. Medical Imaging Informatics identifies core concepts within the field, explores research challenges that drive development, and includes current state-of-the-art methods and strategies.
This book provides an overview of current and potential applications of artificial intelligence (AI) for cardiothoracic imaging. Most AI systems used in medical imaging are data-driven and based on supervised machine learning. Clinicians and AI specialists can contribute to the development of an AI system in different ways, focusing on their respective strengths. Unfortunately, communication between these two sides is far from fluent and, from time to time, they speak completely different languages. Mutual understanding and collaboration are imperative because the medical system is based on physicians’ ability to take well-informed decisions and convey their reasoning to colleagues and patients. This book offers unique insights and informative chapters on the use of AI for cardiothoracic imaging from both the technical and clinical perspective. It is also a single comprehensive source that provides a complete overview of the entire process of the development and use of AI in clinical practice for cardiothoracic imaging. The book contains chapters focused on cardiac and thoracic applications as well more general topics on the potentials and pitfalls of AI in medical imaging. Separate chapters will discuss the valorization, regulations surrounding AI, cost-effectiveness, and future perspective for different countries and continents. This book is an ideal guide for clinicians (radiologists, cardiologists etc.) interested in working with AI, whether in a research setting developing new AI applications or in a clinical setting using AI algorithms in clinical practice. The book also provides clinical insights and overviews for AI specialists who want to develop clinically relevant AI applications.
A practical guide to performing and analysing cardiovascular scans, this handbook is fully updated in this second edition. Containing a wealth of example scan images and detailed guidance on techniques and interpretations, this book is an invaluable workstation resource.
This classic textbook has provided students of medical law and ethics with a framework for exploring this fascinating subject for over 30 years. Providing coverage of all of the topics found on medical law courses, it gives an overview of the inter-relationship between ethical medical practice and the law. Medical law is significantly shaped by the courts, and as such this book provides extensive coverage of recent judicial decisions as well as statutory developments. The new edition continues to evolve to reflect changes in the law and shifting ethical opinions.