This book describes mathematical techniques for interpreting measurements of greenhouse gases in order to learn about their sources and sinks. It is aimed at researchers and graduate students embarking upon studies in this area. Established researchers will also find its extensive referencing invaluable.
This revised edition of the bestselling Practice of Reservoir Engineering has been written for those in the oil industry requiring a working knowledge of how the complex subject of hydrocarbon reservoir engineering can be applied in the field in a practical manner. Containing additions and corrections to the first edition, the book is a simple statement of how to do the job and is particularly suitable for reservoir/production engineers as well as those associated with hydrocarbon recovery.This practical book approaches the basic limitations of reservoir engineering with the basic tenet of science: Occam's Razor, which applies to reservoir engineering to a greater extent than for most physical sciences - if there are two ways to account for a physical phenomenon, it is the simpler that is the more useful. Therefore, simplicity is the theme of this volume.Reservoir and production engineers, geoscientists, petrophysicists, and those involved in the management of oil and gas fields will want this edition.
The Southern Hemisphere commands an increasing interest among atmospheric chemists. It has smaller and less industrialized continents than the Northern Hemisphere and thus enjoys lower emissions of anthropogenic and biogenic pollu tants. As a consequence, the concentrations of trace species are lower in the Sou thern Hemisphere, giving rise to significant inter-hemispheric gradients. From an observation of the climatology of the various trace gas gradients important conclu sions on the chemical lifetimes, the distribution of sources and transport of trace species can be derived. Thus it is only fitting that the CSIRO Division of Atmos pheric Research, Aspendale, Australia, hosted the Conference on the Scientific Application of Baseline Observations of Atmospheric Composition (SABOAC). It was convened by Dr Graeme Pearman of the CSIRO and sponsored by the CSIRO and the Australian Bureau of Meteorology. Graeme Pearman and Ian Galbally of the CSIRO also agreed to serve as Guest Editors. The Conference was well attended and because of its location enjoyed an un usually large number of participants from the Southern Hemisphere. About 40 papers were presented with a large share of original contributions. At this point we would like to thank the reviewers who helped to maintain strict standards. The con ference topics ranged from Nonreactive Gases, Reactive Gases, Transport, Parti culates, Precipitation Chemistry, to Radiation and Carbondioxide. The present Proceedings do not quite maintain that sequence but partly reflect the order of receipt. DIETER EHHALT 3 Journal of Atmospheric Chemistry 3 (l985), 3-27.
This book, as the outcome of the COST-728/NetFAM workshop, focuses on the following main topics: 1) on-line coupled meteorology-chemistry modelling with two-way feedbacks, 2) off-line coupled modelling and interfaces, 3) validation and case studies including air quality related episodes, and 4) integration of atmospheric chemical transport (ACT) models with numerical weather prediction (NWP). This book is one of the first attempts to give an overall look on such integrated meso-meteorology and chemistry modelling approach. It reviews the current situation with the on-line and off-line coupling of mesoscale meteorological and ACT models worldwide as well as discusses advantages and shortcomings, best practices, and gives recommendations for on-line and off-line coupling of NWP and ACT models, implementation strategy for different feedback mechanisms, direct and indirect effects of aerosols and advanced interfaces between both types of models. The book is oriented towards numerical weather prediction and air quality modelling communities.
1988: coming to grips with a terrifying global experiment The Toronto conference statement made it clear that climate change would affect everyone. It called greenhouse gas atmospheric pollution an ‘uncontrolled, globally pervasive experiment whose ultimate consequences could be second only to nuclear war’. World governments were urged to swiftly develop emission reduction targets (The changing atmosphere: implications for global security, 1988). Relevant to both Australian and overseas audiences, here is the untold story of how Australia buried its knowledge on climate change science and response options during the 1990s — going from clarity to confusion and doubt after arguably leading the world in citizen understanding and a political will to act in the late 1980s. ‘What happened and why’ is a fascinating exploration drawing on the public record of how a society revised its good understanding on a critical issue affecting every citizen. It happened through political and media communication, regardless of international scientific assessments that have remained consistent in ascribing causes and risks since 1990. How could this happen? The author examines the major influences, with lessons for the present, on how the story was reframed. Key have been values and beliefs, including economic beliefs, that trumped the science, the ability of changing political leaders and the mass media to set the story for the public, as well as the role of scientists’ own communication over time and the use and misuse of uncertainty.
A major task of our time is to ensure adequate food supplies for the world's current population (now nearing 7 billion) in a sustainable way while protecting the vital functions and biological diversity of the global environment. The task of providing for a growing population is likely to be even more difficult in view of actual and potential changes in climatic conditions due to global warming, and as the population continues to grow. Current projections suggest that the world's temperatures will rise 1.8-4.0 by 2100 and population may reach 8 billion by the year 2025 and some 9 billion by mid-century, after which it may stabilize. This book addresses these critical issues by presenting the science needed not only to understand climate change effects on crops but also to adapt current agricultural systems, particularly in regard to genetics, to the changing conditions. Crop Adaptation to Climate Change covers a spectrum of issues related to both crops and climatic conditions. The first two sections provide a foundation on the factors involved in climate stress, assessing current climate change by region and covering crop physiological responses to these changes. The third and final section contains chapters focused on specific crops and the current research to improve their genetic adaptation to climate change. Written by an international team of authors, Crop Adaptation to Climate Change is a timely look at the potentially serious consequences of climate change for our global food supply, and is an essential resource for academics, researchers and professionals in the fields of crop science, agronomy, plant physiology and molecular biology; crop consultants and breeders; as well as climate and food scientists.
Master GIS Applications on Modelling and Mapping the Risks of DiseasesInfections transmitted by mosquitoes, ticks, triatomine bugs, sandflies, and black flies cause significant rates of death and disease, especially in developing countries. Why are certain places more susceptible to vector-borne diseases? Modelling Interactions Between Vector-Borne
Since its discovery in early 1900, turbulence has been an interesting and complex area of study. Written by international experts, Air Pollution and Turbulence: Modeling and Applications presents advanced techniques for modeling turbulence, with a special focus on air pollution applications, including pollutant dispersion and inverse problems. The
The Climate Change 2007 volumes of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) provide the most comprehensive and balanced assessment of climate change available. This IPCC Working Group I report brings us completely up-to-date on the full range of scientific aspects of climate change. Written by the world's leading experts, the IPCC volumes will again prove to be invaluable for researchers, students, and policymakers, and will form the standard reference works for policy decisions for government and industry worldwide.