This book provides an account of the structure and properties of crystalline binary adducts. Such crystals are perhaps better known as molecular compounds and complexes and are estimated to make up one quarter of the world's crystals. More than 600 figures, 200 tables and 3500 references are included in the book.
This book provides a comprehensive and unified account of the structure and properties of crystalline binary adducts. Perhaps better known as molecular complexes and compounds, these crystals are currently estimated (from molecular recognition studies) to make up one quarter of the world's crystals, providing evidence for some sort of special attraction between the two components. DNA is perhaps the most famous example but others (hydrates, solvates, host-guest inclusion complexes, donor-acceptor compounds) pervade the whole body of solid state chemistry. Although much research has been published, there has never been a comprehensive and unified treatment of the whole field. This book has been designed to fill this gap, comparing and contrasting the various examples and the different types of interaction (hydrogen bonding, inclusion and localized or delocalized charge transfer). More than 600 figures, 200 tables and 3500 references are included in the book. Since most 'parent compounds' form a number of adducts, the fraction of crystalline binary adducts is only going to grow making this account just the 'tip of the iceberg'.
This is a thoroughly revised version of the original book published in 1986. About half of the contents of the previous version remain essentially unchanged, and one quarter has been rewritten and updated. The rest consists of completely new and extended material. Recent research has focussed on new materials made through "molecular engineering", and computational materials science through ab initio electron structure calculations. Another trend is the ever growing interdisciplinary aspect of both basic and applied materials science. There is an obvious need for reviews that link well established results to the modern approaches. One purpose of this book is to provide such an overview in a specific field of materials science, namely thermophysical phenomena that are intimately connected with the lattice vibrations of solids. This includes, e.g., elastic properties and electrical and thermal transport. Furthermore, this book attempts to present the results in such a form that the reader can clearly see their domain of applicability, for instance if and how they depend on crystal structure, defects, applied pressure, crystal anisotropy etc. The level and presentation is such that the results can be immediately used in research. Graduate students in condensed matter physics, metallurgy, inorganic chemistry or geophysical materials will benefit from this book as will theoretical physicists and scientists in industrial research laboratories.
Polymorphism - the multiplicity of structures or forms - is a term that is used in many disciplines. In chemistry it refers to the existence of more than one crystal structure for a particular chemical substance. The properties of a substance are determined by its composition and by its structure. In the last two decades, there has been a sharp rise in the interest in polymorphic systems, as an intrinsically interesting phenomenon and as an increasingly important component in the development and marketing of a variety of materials based on organic molecules (e.g. pharmaceuticals, dyes and pigments, explosives, etc.). This book summarizes and brings up to date the current knowledge and understanding of polymorphism of molecular crystals, and concentrates it in one comprehensive source. The book will be an invaluable reference for students, researchers, and professionals in the field.
This book describes the bond valence model, a description of acid-base bonding which is becoming increasingly popular particularly in fields such as materials science and mineralogy where solid state inorganic chemistry is important. Recent improvements in crystal structure determination have allowed the model to become more quantitative. Unlike other models of inorganic chemical bonding, the bond valence model is simple, intuitive, and predictive, and can be used for analysing crystal structures and the conceptual modelling of local as well as extended structures. This is the first book to explore in depth the theoretical basis of the model and to show how it can be applied to synthetic and solution chemistry. It emphasizes the separate roles of the constraints of chemistry and of three-dimensional space by analysing the chemistry of solids. Many applications of the model in physics, materials science, chemistry, mineralogy, soil science, surface science, and molecular biology are reviewed. The final chapter describes how the bond valence model relates to and represents a simplification of other models of inorganic chemical bonding.
The word OC nucleation, OCO derived from OC nuclear family, OCO refers to the concept of the progenitor, or the mother and the father of any family. Only in the last few centuries have physicists OC borrowedOCO the word, and more recently, biologists for Theodor Schwann''s cell theory. Most recently, the term has come into use in atomic theory, spectroscopy, and radioactivity, as well as in the fields of atomic bombs, fission, and fusion. Nucleation as a physicochemical process is followed by two poorly understood phenomena OCo aggregation and crystallization - which underlie disorders like Alzheimer''s and OC mad-cowOCO disease (aggregation of amyloid plaque), cardiovascular diseases (deposition in coronary vessels of cholesterol and lipids), and the appearance of crystals under physiological conditions (gout, silicoses, and liver or kidney stones).Written by leading scientists in the field, including one Nobel Laureate, this book provides a unique perspective between the physical and chemical sciences on the one hand, and the biological and medical sciences on the other, and should be of considerable value to scientists, physicians, students, and the interested lay publi
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.