* The chapter on primality tests is thoroughly revised. This is the first book to include practical implementations of the recent major improvements in primality testing * The chapter about random number generation completely rewritten * Completely revised to incorporate latest cryptographic techniques
From the world's most renowned security technologist, Bruce Schneier, this 20th Anniversary Edition is the most definitive reference on cryptography ever published and is the seminal work on cryptography. Cryptographic techniques have applications far beyond the obvious uses of encoding and decoding information. For developers who need to know about capabilities, such as digital signatures, that depend on cryptographic techniques, there's no better overview than Applied Cryptography, the definitive book on the subject. Bruce Schneier covers general classes of cryptographic protocols and then specific techniques, detailing the inner workings of real-world cryptographic algorithms including the Data Encryption Standard and RSA public-key cryptosystems. The book includes source-code listings and extensive advice on the practical aspects of cryptography implementation, such as the importance of generating truly random numbers and of keeping keys secure. ". . .the best introduction to cryptography I've ever seen. . . .The book the National Security Agency wanted never to be published. . . ." -Wired Magazine ". . .monumental . . . fascinating . . . comprehensive . . . the definitive work on cryptography for computer programmers . . ." -Dr. Dobb's Journal ". . .easily ranks as one of the most authoritative in its field." -PC Magazine The book details how programmers and electronic communications professionals can use cryptography-the technique of enciphering and deciphering messages-to maintain the privacy of computer data. It describes dozens of cryptography algorithms, gives practical advice on how to implement them into cryptographic software, and shows how they can be used to solve security problems. The book shows programmers who design computer applications, networks, and storage systems how they can build security into their software and systems. With a new Introduction by the author, this premium edition will be a keepsake for all those committed to computer and cyber security.
Password sniffing, spoofing, buffer overflows, and denial of service: these are only a few of the attacks on today's computer systems and networks. At the root of this epidemic is poorly written, poorly tested, and insecure code that puts everyone at risk. Clearly, today's developers need help figuring out how to write code that attackers won't be able to exploit. But writing such code is surprisingly difficult. Secure Programming Cookbook for C and C++ is an important new resource for developers serious about writing secure code. It contains a wealth of solutions to problems faced by those who care about the security of their applications. It covers a wide range of topics, including safe initialization, access control, input validation, symmetric and public key cryptography, cryptographic hashes and MACs, authentication and key exchange, PKI, random numbers, and anti-tampering. The rich set of code samples provided in the book's more than 200 recipes will help programmers secure the C and C++ programs they write for both Unix® (including Linux®) and Windows® environments. Readers will learn: How to avoid common programming errors, such as buffer overflows, race conditions, and format string problems How to properly SSL-enable applications How to create secure channels for client-server communication without SSL How to integrate Public Key Infrastructure (PKI) into applications Best practices for using cryptography properly Techniques and strategies for properly validating input to programs How to launch programs securely How to use file access mechanisms properly Techniques for protecting applications from reverse engineering The book's web site supplements the book by providing a place to post new recipes, including those written in additional languages like Perl, Java, and Python. Monthly prizes will reward the best recipes submitted by readers. Secure Programming Cookbook for C and C++ is destined to become an essential part of any developer's library, a code companion developers will turn to again and again as they seek to protect their systems from attackers and reduce the risks they face in today's dangerous world.
Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today's designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.
This book constitutes the refereed proceedings of the 14th International Conference on Applied Cryptography and Network Security, ACNS 2016, held in Guildford, UK. in June 2016. 5. The 35 revised full papers included in this volume and presented together with 2 invited talks, were carefully reviewed and selected from 183 submissions.ACNS is an annual conference focusing on innovative research and current developments that advance the areas of applied cryptography, cyber security and privacy.
The mathematical theory and practice of cryptography and coding underpins the provision of effective security and reliability for data communication, processing, and storage. Theoretical and implementational advances in the fields of cryptography and coding are therefore a key factor in facilitating the growth of data communications and data networks of various types. Thus, this Eight International Conference in an established and successful IMA series on the theme of “Cryptography and Coding” was both timely and relevant. The theme of this conference was the future of coding and cryptography, which was touched upon in presentations by a number of invited speakers and researchers. The papers that appear in this book include recent research and development in error control coding and cryptography. These start with mathematical bounds, statistical decoding schemes for error correcting codes, and undetected error probabilities and continue with the theoretical aspects of error correction coding such as graph and trellis decoding, multifunctional and multiple access communication systems, low density parity check codes, and iterative decoding. These are followed by some papers on key recovery attack, authentication, stream cipher design, and analysis of ECIES algorithms, and lattice attacks on IP based protocols.
Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application
Now the most used texbook for introductory cryptography courses in both mathematics and computer science, the Third Edition builds upon previous editions by offering several new sections, topics, and exercises. The authors present the core principles of modern cryptography, with emphasis on formal definitions, rigorous proofs of security.
The first part of this book covers the key concepts of cryptography on an undergraduate level, from encryption and digital signatures to cryptographic protocols. Essential techniques are demonstrated in protocols for key exchange, user identification, electronic elections and digital cash. In the second part, more advanced topics are addressed, such as the bit security of one-way functions and computationally perfect pseudorandom bit generators. The security of cryptographic schemes is a central topic. Typical examples of provably secure encryption and signature schemes and their security proofs are given. Though particular attention is given to the mathematical foundations, no special background in mathematics is presumed. The necessary algebra, number theory and probability theory are included in the appendix. Each chapter closes with a collection of exercises. In the second edition the authors added a complete description of the AES, an extended section on cryptographic hash functions, and new sections on random oracle proofs and public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks. The third edition is a further substantive extension, with new topics added, including: elliptic curve cryptography; Paillier encryption; quantum cryptography; the new SHA-3 standard for cryptographic hash functions; a considerably extended section on electronic elections and Internet voting; mix nets; and zero-knowledge proofs of shuffles. The book is appropriate for undergraduate and graduate students in computer science, mathematics, and engineering.