Crossed Products of C*-Algebras, Topological Dynamics, and Classification

Crossed Products of C*-Algebras, Topological Dynamics, and Classification

Author: Thierry Giordano

Publisher: Springer

Published: 2018-08-28

Total Pages: 494

ISBN-13: 3319708694

DOWNLOAD EBOOK

This book collects the notes of the lectures given at an Advanced Course on Dynamical Systems at the Centre de Recerca Matemàtica (CRM) in Barcelona. The notes consist of four series of lectures. The first one, given by Andrew Toms, presents the basic properties of the Cuntz semigroup and its role in the classification program of simple, nuclear, separable C*-algebras. The second series of lectures, delivered by N. Christopher Phillips, serves as an introduction to group actions on C*-algebras and their crossed products, with emphasis on the simple case and when the crossed products are classifiable. The third one, given by David Kerr, treats various developments related to measure-theoretic and topological aspects of crossed products, focusing on internal and external approximation concepts, both for groups and C*-algebras. Finally, the last series of lectures, delivered by Thierry Giordano, is devoted to the theory of topological orbit equivalence, with particular attention to the classification of minimal actions by finitely generated abelian groups on the Cantor set.


Crossed Products of $C^*$-Algebras

Crossed Products of $C^*$-Algebras

Author: Dana P. Williams

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 546

ISBN-13: 0821842420

DOWNLOAD EBOOK

The theory of crossed products is extremely rich and intriguing. There are applications not only to operator algebras, but to subjects as varied as noncommutative geometry and mathematical physics. This book provides a detailed introduction to this vast subject suitable for graduate students and others whose research has contact with crossed product $C*$-algebras. in addition to providing the basic definitions and results, the main focus of this book is the fine ideal structure of crossed products as revealed by the study of induced representations via the Green-Mackey-Rieffel machine. in particular, there is an in-depth analysis of the imprimitivity theorems on which Rieffel's theory of induced representations and Morita equivalence of $C*$-algebras are based. There is also a detailed treatment of the generalized Effros-Hahn conjecture and its proof due to Gootman, Rosenberg, and Sauvageot. This book is meant to be self-contained and accessible to any graduate student coming out of a first course on operator algebras. There are appendices that deal with ancillary subjects, which while not central to the subject, are nevertheless crucial for a complete understanding of the material. Some of the appendices will be of independent interest. to view another book by this author, please visit Morita Equivalence and Continuous-Trace $C*$-Algebras.


An Introduction to C*-Algebras and the Classification Program

An Introduction to C*-Algebras and the Classification Program

Author: Karen R. Strung

Publisher: Springer Nature

Published: 2020-12-15

Total Pages: 322

ISBN-13: 3030474658

DOWNLOAD EBOOK

This book is directed towards graduate students that wish to start from the basic theory of C*-algebras and advance to an overview of some of the most spectacular results concerning the structure of nuclear C*-algebras. The text is divided into three parts. First, elementary notions, classical theorems and constructions are developed. Then, essential examples in the theory, such as crossed products and the class of quasidiagonal C*-algebras, are examined, and finally, the Elliott invariant, the Cuntz semigroup, and the Jiang-Su algebra are defined. It is shown how these objects have played a fundamental role in understanding the fine structure of nuclear C*-algebras. To help understanding the theory, plenty of examples, treated in detail, are included. This volume will also be valuable to researchers in the area as a reference guide. It contains an extensive reference list to guide readers that wish to travel further.


Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension

Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension

Author: Aidan Sims

Publisher: Springer Nature

Published: 2020-06-22

Total Pages: 164

ISBN-13: 3030397130

DOWNLOAD EBOOK

This book collects the notes of the lectures given at the Advanced Course on Crossed Products, Groupoids, and Rokhlin dimension, that took place at the Centre de Recerca Matemàtica (CRM) from March 13 to March 17, 2017. The notes consist of three series of lectures. The first one was given by Dana Williams (Dartmouth College), and served as an introduction to crossed products of C*-algebras and the study of their structure. The second series of lectures was delivered by Aidan Sims (Wollongong), who gave an overview of the theory of topological groupoids (as a model for groups and group actions) and groupoid C*-algebras, with particular emphasis on the case of étale groupoids. Finally, the last series was delivered by Gábor Szabó (Copenhagen), and consisted of an introduction to Rokhlin type properties (mostly centered around the work of Hirshberg, Winter and Zacharias) with hints to the more advanced theory related to groupoids.


Crossed Products of Operator Algebras

Crossed Products of Operator Algebras

Author: Elias G. Katsoulis

Publisher: American Mathematical Soc.

Published: 2019-04-10

Total Pages: 100

ISBN-13: 1470435454

DOWNLOAD EBOOK

The authors study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. They develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. They complement their generic results with the detailed study of many important special cases. In particular they study crossed products of tensor algebras, triangular AF algebras and various associated C -algebras. They make contributions to the study of C -envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. They also answer questions from the pertinent literature.


Ergodic Theory

Ergodic Theory

Author: Cesar E. Silva

Publisher: Springer Nature

Published: 2023-07-31

Total Pages: 707

ISBN-13: 1071623885

DOWNLOAD EBOOK

This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras


Operator Structures and Dynamical Systems

Operator Structures and Dynamical Systems

Author: Marcel de Jeu

Publisher: American Mathematical Soc.

Published: 2009-11-30

Total Pages: 329

ISBN-13: 0821847473

DOWNLOAD EBOOK

This volume contains the proceedings of a Leiden Workshop on Dynamical Systems and their accompanying Operator Structures which took place at the Lorentz Center in Leiden, The Netherlands, on July 21-25, 2008. These papers offer a panorama of selfadjoint and non-selfadjoint operator algebras associated with both noncommutative and commutative (topological) dynamical systems and related subjects. Papers on general theory, as well as more specialized ones on symbolic dynamics and complex dynamical systems, are included.


Partial Dynamical Systems, Fell Bundles and Applications

Partial Dynamical Systems, Fell Bundles and Applications

Author: Ruy Exel

Publisher: American Mathematical Soc.

Published: 2017-09-20

Total Pages: 330

ISBN-13: 1470437856

DOWNLOAD EBOOK

Partial dynamical systems, originally developed as a tool to study algebras of operators in Hilbert spaces, has recently become an important branch of algebra. Its most powerful results allow for understanding structural properties of algebras, both in the purely algebraic and in the C*-contexts, in terms of the dynamical properties of certain systems which are often hiding behind algebraic structures. The first indication that the study of an algebra using partial dynamical systems may be helpful is the presence of a grading. While the usual theory of graded algebras often requires gradings to be saturated, the theory of partial dynamical systems is especially well suited to treat nonsaturated graded algebras which are in fact the source of the notion of “partiality”. One of the main results of the book states that every graded algebra satisfying suitable conditions may be reconstructed from a partial dynamical system via a process called the partial crossed product. Running in parallel with partial dynamical systems, partial representations of groups are also presented and studied in depth. In addition to presenting main theoretical results, several specific examples are analyzed, including Wiener–Hopf algebras and graph C*-algebras.


Operator Algebras and Applications

Operator Algebras and Applications

Author: A. Katavolos

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 470

ISBN-13: 9401155003

DOWNLOAD EBOOK

During the last few years, the theory of operator algebras, particularly non-self-adjoint operator algebras, has evolved dramatically, experiencing both international growth and interfacing with other important areas. The present volume presents a survey of some of the latest developments in the field in a form that is detailed enough to be accessible to advanced graduate students as well as researchers in the field. Among the topics treated are: operator spaces, Hilbert modules, limit algebras, reflexive algebras and subspaces, relations to basis theory, C* algebraic quantum groups, endomorphisms of operator algebras, conditional expectations and projection maps, and applications, particularly to wavelet theory. The volume also features an historical paper offering a new approach to the Pythagoreans' discovery of irrational numbers.


Selected Papers on Analysis and Differential Equations

Selected Papers on Analysis and Differential Equations

Author: 野水克己

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 152

ISBN-13: 9780821835081

DOWNLOAD EBOOK

This volume contains translations of papers that originally appeared in the Japanese journal, Sugaku. Ordinarily the papers would appear in the AMS translation of that journal, but to expedite publication, the Society has chosen to publish them as a volume of selected papers. The papers range over a variety of topics, including nonlinear partial differential equations, $C*$-algebras, and Schrodinger operators. The volume is suitable for graduate students and research mathematicians interested in analysis and differential equations.