Coupled Structural-acoustic Analytical Models for the Prediction of Turbulent Boundary-layer-induced Noise in Aircraft Cabins

Coupled Structural-acoustic Analytical Models for the Prediction of Turbulent Boundary-layer-induced Noise in Aircraft Cabins

Author: Joana Luíz Torres da Rocha

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Significant interior noise and vibrations in aircraft cabins are generated by the turbulent flow over the fuselage. The turbulent boundary layer (TBL) excitation is the most important noise source for jet powered aircraft during cruise flight. Reduced levels of interior noise are desirable both for comfort and health reasons. However, to efficiently design noise control systems, and to design new and optimized structures that are more efficient in the noise reduction, a clearer understanding of the sound radiation and transmission mechanisms is crucial. This task is far from being straightforward, mainly due to the complexity of the system consisted by the aircraft fuselage, and all the sound transmission mechanisms involved in a such complex environment. The present work aims to give a contribution for the understanding of these mechanisms.


Noise Sources in Turbulent Shear Flows: Fundamentals and Applications

Noise Sources in Turbulent Shear Flows: Fundamentals and Applications

Author: Roberto Camussi

Publisher: Springer Science & Business Media

Published: 2013-02-11

Total Pages: 453

ISBN-13: 3709114586

DOWNLOAD EBOOK

The articles in this volume present the state-of-the-art in noise prediction, modeling and measurement. The articles are partially based on class notes provided during the course `Noise sources in turbulent shear flows', given at CISM on April 2011. The first part contains general concepts of aero acoustics, including vortex sound theory and acoustic analogies, in the second part particular emphasis is put into arguments of interest for engineers and relevant for aircraft design: jet noise, airfoil broadband noise, boundary layer noise (including interior noise and its control) and the concept of noise sources, their theoretical modeling and identification in turbulent lows. All these arguments are treated extensively with the inclusion of many practical examples and references to engineering applications.


Turbulent Boundary Layer Models for Acoustic Analysis

Turbulent Boundary Layer Models for Acoustic Analysis

Author: Teresa S. Miller

Publisher:

Published: 2011

Total Pages: 202

ISBN-13:

DOWNLOAD EBOOK

An analysis of the three types of turbulent boundary layer (TBL) models for acoustic analysis is presented because current preferred models over-predict TBL contributions to aircraft interior noise predictions. The mean square pressure is a measure of the total energy due to the pressure fluctuations beneath a turbulent boundary layer. The single point wall pressure spectrum sorts the energy into frequencies. The normalized wavenumber-frequency spectrum sorts the energy into wavenumbers. The pressure fluctuations beneath a turbulent boundary layer are found by solving the Poisson equation. In this work, the Poisson equation is solved both numerically and analytically using data from an LES/DES simulation. The numerical solution uses the point Gauss-Seidel method and has reasonable results. The analytical solution uses an eigenvalue expansion method that is less successful. The empirical mean square pressure models predict a relatively large spread in the pressure fluctuation values. It is difficult to draw any meaningful conclusions on which mean square pressure model is preferred when compared to data from the Spirit AeroSystems 6x6 duct. The single point wall pressure spectrum models are evaluated and the two more modern models of Smol'yakov and Goody seem to perform the best. These models are also compared to data from the Spirit AeroSystems 6x6 duct. The spectrum at low frequencies rolled off similar to the Goody model. This analysis indicates that the Goody model is the appropriate single point wall pressure spectrum model for aircraft applications. Important features of the normalized wavenumber-frequency spectrum models are presented and can be classified as either separable or non-separable. Separable models in the Corcos normalized wavenumber-frequency spectrum model class tend to over-predict the response for a range of cases. Both the non-separable Chase 1 and Smol'yakov-Tkachenko models appear to match the M.I.T. low noise, low turbulence wind tunnel data throughout the range of comparison. The Smol'yakov-Tkachenko model does not lend itself to straight forward Fourier transforms needed by the acoustic models. But the Chase 1 model can be converted from wavenumber-frequency spectrum to the cross spectrum, so it is the preferred model for aircraft applications. Therefore, the preferred turbulent boundary layer models for aircraft interior noise predictions are the single point wall pressure spectrum model of Goody and the normalized wavenumber-frequency spectrum model of Chase 1.


Flinovia—Flow Induced Noise and Vibration Issues and Aspects-III

Flinovia—Flow Induced Noise and Vibration Issues and Aspects-III

Author: Elena Ciappi

Publisher: Springer Nature

Published: 2021-04-29

Total Pages: 400

ISBN-13: 3030648079

DOWNLOAD EBOOK

This volume gathers the latest advances and innovations in the field of flow-induced vibration and noise, as presented by leading international researchers at the 3rd International Symposium on Flow Induced Noise and Vibration Issues and Aspects (FLINOVIA), which was held in Lyon, France, in September 2019. It explores topics such as turbulent boundary layer-induced vibration and noise, tonal noise, noise due to ingested turbulence, fluid-structure interaction problems, and noise control techniques. The authors’ backgrounds represent a mix of academia, government, and industry, and several papers include applications to important problems for underwater vehicles, aerospace structures and commercial transportation. The book offers a valuable reference guide for all those interested in measurement, modelling, simulation and reproduction of the flow excitation and flow induced structural response.