Coupled Nonlinear Flight Dynamics, Aeroelasticity, and Control of Very Flexible Aircraft
Author: Christopher Mark Shearer
Publisher:
Published: 2006
Total Pages: 484
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Christopher Mark Shearer
Publisher:
Published: 2006
Total Pages: 484
ISBN-13:
DOWNLOAD EBOOKAuthor: Grigorios Dimitriadis
Publisher: John Wiley & Sons
Published: 2017-03-10
Total Pages: 944
ISBN-13: 1118756460
DOWNLOAD EBOOKIntroduction to Nonlinear Aeroelasticity Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics and so on. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems Considers the practical application of the theories and methods Covers nonlinear dynamics, bifurcation analysis and numerical methods Accompanied by a website hosting Matlab code Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.
Author: Rafael Palacios
Publisher: Cambridge University Press
Published: 2023-06-30
Total Pages: 528
ISBN-13: 1108359574
DOWNLOAD EBOOKExplore the connections among aeroelasticity, flight dynamics, and control with an up-to-date multidisciplinary approach. New insights into the interaction between these fields, which is a distinctive feature of many modern aircraft designed for very high aerodynamic efficiency, are fully illustrated in this one-of-a-kind book. Presenting basic concepts in a systematic and rigorous, yet accessible way, this book builds up to state-of-the-art models through an intuitive step-by-step approach. Both linear and nonlinear attributes are covered and, by revisiting classical solutions using modern analysis methods, this book provides a unique perspective to bridge the gap between disciplines. Numerous original numerical examples, including online source codes, help to build intuition through hands-on activities. This book will empower the reader to design better and more environmentally friendly aircraft, and is an ideal resource for graduate students, researchers, and aerospace engineers.
Author: Hiroshi Okada
Publisher: Springer Nature
Published: 2019-11-16
Total Pages: 1278
ISBN-13: 303027053X
DOWNLOAD EBOOKThis book gathers the latest advances, innovations, and applications in the field of computational engineering, as presented by leading international researchers and engineers at the 24th International Conference on Computational & Experimental Engineering and Sciences (ICCES), held in Tokyo, Japan on March 25-28, 2019. ICCES covers all aspects of applied sciences and engineering: theoretical, analytical, computational, and experimental studies and solutions of problems in the physical, chemical, biological, mechanical, electrical, and mathematical sciences. As such, the book discusses highly diverse topics, including composites; bioengineering & biomechanics; geotechnical engineering; offshore & arctic engineering; multi-scale & multi-physics fluid engineering; structural integrity & longevity; materials design & simulation; and computer modeling methods in engineering. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
Author: Robert F. Stengel
Publisher: Princeton University Press
Published: 2022-11-01
Total Pages: 914
ISBN-13: 0691237042
DOWNLOAD EBOOKAn updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book
Author: Thomas R. Yechout
Publisher: AIAA
Published: 2003
Total Pages: 666
ISBN-13: 9781600860782
DOWNLOAD EBOOKBased on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Author: Robert C. Nelson
Publisher:
Published: 1998
Total Pages: 464
ISBN-13:
DOWNLOAD EBOOKThis edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.
Author: Zhongsheng Hou
Publisher: CRC Press
Published: 2013-09-24
Total Pages: 400
ISBN-13: 1466594187
DOWNLOAD EBOOKModel Free Adaptive Control: Theory and Applications summarizes theory and applications of model-free adaptive control (MFAC). MFAC is a novel adaptive control method for the unknown discrete-time nonlinear systems with time-varying parameters and time-varying structure, and the design and analysis of MFAC merely depend on the measured input and output data of the controlled plant, which makes it more applicable for many practical plants. This book covers new concepts, including pseudo partial derivative, pseudo gradient, pseudo Jacobian matrix, and generalized Lipschitz conditions, etc.; dynamic linearization approaches for nonlinear systems, such as compact-form dynamic linearization, partial-form dynamic linearization, and full-form dynamic linearization; a series of control system design methods, including MFAC prototype, model-free adaptive predictive control, model-free adaptive iterative learning control, and the corresponding stability analysis and typical applications in practice. In addition, some other important issues related to MFAC are also discussed. They are the MFAC for complex connected systems, the modularized controller designs between MFAC and other control methods, the robustness of MFAC, and the symmetric similarity for adaptive control system design. The book is written for researchers who are interested in control theory and control engineering, senior undergraduates and graduated students in engineering and applied sciences, as well as professional engineers in process control.
Author: Xinguo Zhang
Publisher: Springer
Published: 2019-06-08
Total Pages: 3091
ISBN-13: 981133305X
DOWNLOAD EBOOKThis book is a compilation of peer-reviewed papers from the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). The symposium is a common endeavour between the four national aerospace societies in China, Australia, Korea and Japan, namely, the Chinese Society of Aeronautics and Astronautics (CSAA), Royal Aeronautical Society Australian Division (RAeS Australian Division), the Korean Society for Aeronautical and Space Sciences (KSAS) and the Japan Society for Aeronautical and Space Sciences (JSASS). APISAT is an annual event initiated in 2009 to provide an opportunity for researchers and engineers from Asia-Pacific countries to discuss current and future advanced topics in aeronautical and space engineering.
Author: Michael V. Cook
Publisher: Butterworth-Heinemann
Published: 2012-10-03
Total Pages: 608
ISBN-13: 008098276X
DOWNLOAD EBOOKThe study of flight dynamics requires a thorough understanding of the theory of the stability and control of aircraft, an appreciation of flight control systems and a grounding in the theory of automatic control. Flight Dynamics Principles is a student focused text and provides easy access to all three topics in an integrated modern systems context. Written for those coming to the subject for the first time, the book provides a secure foundation from which to move on to more advanced topics such as, non-linear flight dynamics, flight simulation, handling qualities and advanced flight control. - Additional examples to illustrate the application of computational procedures using tools such as MATLAB®, MathCad® and Program CC® - Improved compatibility with, and more expansive coverage of the North American notational style - Expanded coverage of lateral-directional static stability, manoeuvrability, command augmentation and flight in turbulence - An additional coursework study on flight control design for an unmanned air vehicle (UAV)