This highly practical reference presents for the first time in a single volume all types of environmental degradation a metallic compound may undergo during its processing, storage, and service. Clarifying general and localized corrosion effects, Environmental Degradation of Metals describes the effects of atmospheric exposure, high-temperature gases, soil, water, weak and strong chemicals, liquid metals, and nuclear radiation. It determines whether corrosion can occur under a given set of conditions, shows how improvements in component design can reduce corrosion, and details the high- and low-temperature effects of oxidizing agents. The book also investigates the instantaneous and delayed failure of solid metal in contact with liquid metal, highlights the influence of hydrogen on metal, and profiles radiation effects on metal.
This highly practical reference presents for the first time in a single volume all types of environmental degradation a metallic compound may undergo during its processing, storage, and service. Clarifying general and localized corrosion effects, Environmental Degradation of Metals describes the effects of atmospheric exposure, high-temperature gas
Called "a useful contribution to the current litereture on corrosion science, engineering, and technology" by Corrosion Review, this book offers real-world applications and problem-solving techniques to reduce the occurrence of pits, cracks, and deterioration in industrial, automotive, marine, and electronic structures. It details the electrochemic
It is estimated that about 40% of the annual production of metals is used to repair or replace materials damaged by corrosion. Corrosion causes waste of the natural material and energy resources, it creates serious materials problems for many technologies and adversely affects almost every area of engineering. The use of metals in various aggressive environments has resulted in an extremely wide diversity of corrosion problems. This book presents a collection of concise reviews written by experts in the field on selected topics of metallic corrosion and on some aspects of interaction of hydrogen with metals. A comprehensive range of problems is examined including localized corrosion, high temperature corrosion in liquid metals and molten salts, transport control in corrosion processes, entry of hydrogen into metals, hydrogen embrittlement, and hydrogen reactions with metals. The variety of topics covered in the book will provide corrosion scientists, engineers, university lecturers and students alike with an interdisciplinary approach to solving problems of materials degradation and surface processes in metal corrosion.
Introduction and Scope-During the last few decades, an enormous effort has been made to understand corrosion phenomena and their mechanisms, and to elucidate the causes that dramatically influence the service lifetime of metal materials. The performance of metal materials in aggressive environments is critical for a sustainable society. The failure of the material in service impacts the economy, the environment, health, and society. In this regard, corrosion-based economic losses due to maintenance, repair, and the replacement of existing structures and infrastructure account for up to 4% of gross domestic product (GDP) in well developed countries. One of the biggest issues in corrosion engineering is estimating service lifetime. Corrosion prediction has become very difficult, as there is no direct correlation with service lifetime and experimental lab results, usually as a result of discrepancies between accelerated testing and real corrosion processes. It is of major interest to forecast the impact of corrosion-based losses on society and the global economy, since existing structures and infrastructure are becoming old, and crucial decisions now need to be made to replace them. On the other hand, environmental protocols seek to reduce greenhouse effects. Therefore, low emission policies, in force, establish regulations for the next generation of materials and technologies. Advanced technologies and emergent materials will enable us to get through the next century. Great advances are currently in progress for the development of corrosion-resistant metal materials for different sectors, such as energy, transport, construction, and health. This Special Issue on the corrosion and protection of metals is focused on current trends in corrosion science, engineering, and technology, ranging from fundamental to applied research, thus covering subjects related to corrosion mechanisms and modelling, protection and inhibition processes, and mitigation strategies.
High temperature corrosion is a phenomenon that occurs in components that operate at very high temperatures, such as gas turbines, jet engines and industrial plants. Engineers are constantly striving to understand and prevent this type of corrosion. This book examines the latest developments in the understanding of high temperature corrosion processes and protective oxide scales and coatings.Part one looks at high temperature corrosion. Chapters cover diffusion and solid state reactions, external and internal oxidation of alloys, metal dusting corrosion, tribological degradation, hot corrosion, and oxide scales on hot-rolled steel strips. Modern techniques for analysing high temperature oxidation and corrosion are also discussed. Part two discusses methods of protection using ceramics, composites, protective oxide scales and coatings. Chapters focus on layered ternary ceramics, alumina scales, Ti-Al intermetallic compounds, metal matrix composites, chemical vapour deposited silicon carbide, nanocrystalline coatings and thermal barrier coatings. Part three provides case studies illustrating some of the challenges of high temperature corrosion to industry and how they can be overcome. Case studies include the petrochemical industry, modern incinerators and oxidation processing of electronic materials.This book is a valuable reference tool for engineers who develop heat resistant materials, mechanical engineers who design and maintain high temperature equipment and plant, and research scientists and students who study high temperature corrosion and protection of materials. - Describes the latest developments in understanding high temperature corrosion - Presents the latest research by the leading innovators from around the globe - Case studies are provided to illustrate key points
This book describes the fundamental aspects of materials characterization for the ferric oxyhydroxides formed on steel surfaces. Selected examples, from both the basic science and the applied engineering points of view, are presented. Of special interest is the new structural information on ferric oxyhydroxides containing a small amount of alloying elements. The text relates this to their various states and their role in corrosion processes.
Nothing stays the same for ever. The environmental degradation and corrosion of materials is inevitable and affects most aspects of life. In industrial settings, this inescapable fact has very significant financial, safety and environmental implications. The Handbook of Environmental Degradation of Materials explains how to measure, analyse, and control environmental degradation for a wide range of industrial materials including metals, polymers, ceramics, concrete, wood and textiles exposed to environmental factors such as weather, seawater, and fire. Divided into sections which deal with analysis, types of degradation, protection and surface engineering respectively, the reader is introduced to the wide variety of environmental effects and what can be done to control them. The expert contributors to this book provide a wealth of insider knowledge and engineering knowhow, complementing their explanations and advice with Case Studies from areas such as pipelines, tankers, packaging and chemical processing equipment ensures that the reader understands the practical measures that can be put in place to save money, lives and the environment. The Handbook's broad scope introduces the reader to the effects of environmental degradation on a wide range of materials, including metals, plastics, concrete,wood and textiles For each type of material, the book describes the kind of degradation that effects it and how best to protect it Case Studies show how organizations from small consulting firms to corporate giants design and manufacture products that are more resistant to environmental effects
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.