Since John Bosch edited and published the first version of this book in 1995, the world of manufacturing and coordinate measuring machines (CMMs) and coordinate measuring systems (CMSs) has changed considerably. However, the basic physics of the machines has not changed in essence but have become more deeply understood. Completely revised and updat
This work reviews the basic concepts of co-ordinate metrology. It defines what co-ordinate measuring machines (CMMs) are and details how they can be applied to gain a competitive advantage in a variety of business settings, from small machine shops to global manufacturers. Areas that are critical for the successful application of CMMs - including environmental factors, the measuring of speed and accuracy, traceability, versatility and programming methodology - are considered.;The book is intended for manufacturing, mechanical, quality control, design, industrial, automation, automotive and aerospace engineers and managers, as wel as upper-level undergraduate and graduate students in these disciplines.;College or university bookstores may order five or more copies at a special student price, which is available from Marcel Dekker Inc upon request.
This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek’s team at Cracow University of Technology’s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing in recent years. The book is intended for master and PhD students, as well as for metrology engineers working at industrial and research laboratories. It not only provides them with a solid background for using existing coordinate metrology methods; it is also meant to inspire them to develop the state-of-the-art technologies that will play an important role in supporting quality growth and innovation in advanced manufacturing.
This book is the translated English version of a text on industrial surveys, originally published in Slovak by SPEKTRUM STU Publishing. This updated version is not only a translation of the original, but also a reviewed, extended version, which reflects up-to-date international standards and regulations. The book covers topics in engineering surveying not available in other publications in this complex form, and addresses the design methodology, data processing and implementation of geodetic measurements under specific conditions to make industrial work environments safer and more efficient. The book begins by introducing readers to these conditions, and then discusses design of maps, geodetic networks and information systems of industrial plants, the usage of cartesian and polar coordinate measuring systems, terrestrial laser scanning technology, as well as measurement of cranes, rotary kilns and special objects of nuclear power plants. The book will be of use to teachers, students, practitioners (e.g. surveyors), quality production managers, equipment designers and mechanical engineers.
This book presents various state-of-the-art applications for the development of new materials and technologies, discussing computer-based engineering tools that are widely used in simulations, evaluation of data and design processes. For example, modern joining technologies can be used to fabricate new compound or composite materials, even those composed of dissimilar materials. Such materials are often exposed to harsh environments and must possess specific properties. Technologies in this context are mainly related to the transportation technologies in their wider sense, i.e. automotive and marine technologies, including ships, amphibious vehicles, docks, offshore structures, and robots. This book highlights the importance the finite element and finite volume methods that are typically used in the context of engineering simulations.
This book features papers focusing on the implementation of new and future technologies, which were presented at the International Conference on New Technologies, Development and Application, held at the Academy of Science and Arts of Bosnia and Herzegovina in Sarajevo on 27th–29th June 2019. It covers a wide range of future technologies and technical disciplines, including complex systems such as Industry 4.0; robotics; mechatronics systems; automation; manufacturing; cyber-physical and autonomous systems; sensors; networks; control, energy, automotive and biological systems; vehicular networking and connected vehicles; effectiveness and logistics systems, smart grids, as well as nonlinear, power, social and economic systems. We are currently experiencing the Fourth Industrial Revolution “Industry 4.0”, and its implementation will improve many aspects of human life in all segments, and lead to changes in business paradigms and production models. Further, new business methods are emerging, transforming production systems, transport, delivery, and consumption, which need to be monitored and implemented by every company involved in the global market.
This second edition of Precision Motion Control focuses on enabling technologies for precision engineering. It has been extensively edited and rewritten throughout with the following particular areas being expanded or added: • piezoelectric actuators • fine movement control • gantry-stage control • interpolation of quadrature encoder signals • geometrical error modeling for single-, dual- and general-XY-axis stages.
This book gathers the proceedings of the 12th International Conference on Measurement and Quality Control – Cyber Physical Issues (IMEKO TC 14 2019), held in Belgrade, Serbia, on 4–7 June 2019. The event marks the latest in a series of high-level conferences that bring together experts from academia and industry to exchange knowledge, ideas, experiences, research findings, and information in the field of measurement of geometrical quantities. The book addresses a wide range of topics, including: 3D measurement of GPS characteristics, measurement of gears and threads, measurement of roughness, micro- and nano-metrology, laser metrology for precision measurements, cyber physical metrology, optical measurement techniques, industrial computed tomography, multisensor techniques, intelligent measurement systems, evaluating measurement uncertainty, dimensional management in industry, product quality assurance methods, and big data analytics. By providing updates on key issues and highlighting recent advances in measurement and quality control, the book supports the transfer of vital knowledge to the next generation of academics and practitioners.
This book is a comprehensive engineering exploration of all the aspects of precision machine design—both component and system design considerations for precision machines. It addresses both theoretical analysis and practical implementation providing many real-world design case studies as well as numerous examples of existing components and their characteristics. Fast becoming a classic, this book includes examples of analysis techniques, along with the philosophy of the solution method. It explores the physics of errors in machines and how such knowledge can be used to build an error budget for a machine, how error budgets can be used to design more accurate machines.