Convex Analysis and Measurable Multifunctions

Convex Analysis and Measurable Multifunctions

Author: C. Castaing

Publisher: Springer

Published: 2006-11-15

Total Pages: 283

ISBN-13: 3540373845

DOWNLOAD EBOOK

The present work is devoted to convex analysis, measurable multifunctions and some of their applications. The only necessary prerequisite for an intelligent reading is a good knowledge of analysis (Bourbaki or Dunford-Schwartz are appropriate references.


Convex and Set-Valued Analysis

Convex and Set-Valued Analysis

Author: Aram V. Arutyunov

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-12-05

Total Pages: 209

ISBN-13: 3110460300

DOWNLOAD EBOOK

This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index


Convex Analysis

Convex Analysis

Author: Ralph Tyrell Rockafellar

Publisher: Princeton University Press

Published: 2015-04-29

Total Pages: 470

ISBN-13: 1400873177

DOWNLOAD EBOOK

Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.


Fundamentals of Convex Analysis

Fundamentals of Convex Analysis

Author: Jean-Baptiste Hiriart-Urruty

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 268

ISBN-13: 3642564682

DOWNLOAD EBOOK

This book is an abridged version of the two volumes "Convex Analysis and Minimization Algorithms I and II" (Grundlehren der mathematischen Wissenschaften Vol. 305 and 306). It presents an introduction to the basic concepts in convex analysis and a study of convex minimization problems (with an emphasis on numerical algorithms). The "backbone" of bot volumes was extracted, some material deleted which was deemed too advanced for an introduction, or too closely attached to numerical algorithms. Some exercises were included and finally the index has been considerably enriched, making it an excellent choice for the purpose of learning and teaching.


An Easy Path to Convex Analysis and Applications

An Easy Path to Convex Analysis and Applications

Author: Boris Mordukhovich

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 202

ISBN-13: 3031024060

DOWNLOAD EBOOK

Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical foundation for convex optimization, having deep knowledge of convex analysis helps students and researchers apply its tools more effectively. The main goal of this book is to provide an easy access to the most fundamental parts of convex analysis and its applications to optimization. Modern techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and build the theory of generalized differentiation for convex functions and sets in finite dimensions. We also present new applications of convex analysis to location problems in connection with many interesting geometric problems such as the Fermat-Torricelli problem, the Heron problem, the Sylvester problem, and their generalizations. Of course, we do not expect to touch every aspect of convex analysis, but the book consists of sufficient material for a first course on this subject. It can also serve as supplemental reading material for a course on convex optimization and applications.


Convex Analysis and Variational Problems

Convex Analysis and Variational Problems

Author: Ivar Ekeland

Publisher: SIAM

Published: 1999-12-01

Total Pages: 414

ISBN-13: 9781611971088

DOWNLOAD EBOOK

This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.


Convex Analysis for Optimization

Convex Analysis for Optimization

Author: Jan Brinkhuis

Publisher: Springer Nature

Published: 2020-05-05

Total Pages: 278

ISBN-13: 3030418049

DOWNLOAD EBOOK

This textbook offers graduate students a concise introduction to the classic notions of convex optimization. Written in a highly accessible style and including numerous examples and illustrations, it presents everything readers need to know about convexity and convex optimization. The book introduces a systematic three-step method for doing everything, which can be summarized as "conify, work, deconify". It starts with the concept of convex sets, their primal description, constructions, topological properties and dual description, and then moves on to convex functions and the fundamental principles of convex optimization and their use in the complete analysis of convex optimization problems by means of a systematic four-step method. Lastly, it includes chapters on alternative formulations of optimality conditions and on illustrations of their use. "The author deals with the delicate subjects in a precise yet light-minded spirit... For experts in the field, this book not only offers a unifying view, but also opens a door to new discoveries in convexity and optimization...perfectly suited for classroom teaching." Shuzhong Zhang, Professor of Industrial and Systems Engineering, University of Minnesota