Cementitious Materials for Nuclear Waste Immobilization

Cementitious Materials for Nuclear Waste Immobilization

Author: Rehab O. Abdel Rahman

Publisher: John Wiley & Sons

Published: 2014-11-17

Total Pages: 245

ISBN-13: 1118512006

DOWNLOAD EBOOK

Cementitious materials are an essential part in any radioactive waste disposal facility. Conditioning processes such as cementation are used to convert waste into a stable solid form that is insoluble and will prevent dispersion to the surrounding environment. It is incredibly important to understand the long-term behavior of these materials. This book summarises approaches and current practices in use of cementitious materials for nuclear waste immobilisation. It gives a unique description of the most important aspects of cements as nuclear waste forms: starting with a description of wastes, analyzing the cementitious systems used for immobilization and describing the technologies used, and ending with analysis of cementitious waste forms and their long term behavior in an envisaged disposal environment. Extensive research has been devoted to study the feasibility of using cement or cement based materials in immobilizing and solidifying different radioactive wastes. However, these research results are scattered. This work provides the reader with both the science and technology of the immobilization process, and the cementitious materials used to immobilize nuclear waste. It summarizes current knowledge in the field, and highlights important areas that need more investigation. The chapters include: Introduction, Portland cement, Alternative cements, Cement characterization and testing, Radioactive waste cementation, Waste cementation technology, Cementitious wasteform durability and performance assessment.


Numerical Simulation of High-level Radioactive Nuclear Waste Glass Production

Numerical Simulation of High-level Radioactive Nuclear Waste Glass Production

Author:

Publisher:

Published: 1991

Total Pages: 10

ISBN-13:

DOWNLOAD EBOOK

Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.


An Introduction to Nuclear Waste Immobilisation

An Introduction to Nuclear Waste Immobilisation

Author: Michael I. Ojovan

Publisher: Elsevier

Published: 2010-07-07

Total Pages: 334

ISBN-13: 0080455719

DOWNLOAD EBOOK

Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in 'An Introduction to Nuclear Waste Immobilisation' cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies.* Each chapter focuses on a different matrix used in nuclear waste immobilisation: Cement, bitumen, glass and new materials.* Keeps the most important issues surrounding nuclear waste – such as treatment schemes and technologies, and disposal - at the forefront.


Handbook of Advanced Radioactive Waste Conditioning Technologies

Handbook of Advanced Radioactive Waste Conditioning Technologies

Author: Michael I. Ojovan

Publisher: Elsevier

Published: 2011-01-24

Total Pages: 505

ISBN-13: 085709095X

DOWNLOAD EBOOK

Radioactive wastes are generated from a wide range of sources, including the power industry, and medical and scientific research institutions, presenting a range of challenges in dealing with a diverse set of radionuclides of varying concentrations. Conditioning technologies are essential for the encapsulation and immobilisation of these radioactive wastes, forming the initial engineered barrier required for their transportation, storage and disposal. The need to ensure the long term performance of radioactive waste forms is a key driver of the development of advanced conditioning technologies.The Handbook of advanced radioactive waste conditioning technologies provides a comprehensive and systematic reference on the various options available and under development for the treatment and immobilisation of radioactive wastes. The book opens with an introductory chapter on radioactive waste characterisation and selection of conditioning technologies. Part one reviews the main radioactive waste treatment processes and conditioning technologies, including volume reduction techniques such as compaction, incineration and plasma treatment, as well as encapsulation methods such as cementation, calcination and vitrification. This coverage is extended in part two, with in-depth reviews of the development of advanced materials for radioactive waste conditioning, including geopolymers, glass and ceramic matrices for nuclear waste immobilisation, and waste packages and containers for disposal. Finally, part three reviews the long-term performance assessment and knowledge management techniques applicable to both spent nuclear fuels and solid radioactive waste forms.With its distinguished international team of contributors, the Handbook of advanced radioactive waste conditioning technologies is a standard reference for all radioactive waste management professionals, radiochemists, academics and researchers involved in the development of the nuclear fuel cycle. - Provides a comprehensive and systematic reference on the various options available and under development for the treatment and immobilisation of radioactive wastes - Explores radioactive waste characterisation and selection of conditioning technologies including the development of advanced materials for radioactive waste conditioning - Assesses the main radioactive waste treatment processes and conditioning technologies, including volume reduction techniques such as compaction


Properties of Glass-Forming Melts

Properties of Glass-Forming Melts

Author: David Pye

Publisher: CRC Press

Published: 2005-05-12

Total Pages: 512

ISBN-13: 142002731X

DOWNLOAD EBOOK

This book presents state-of-the-art information concerning properties and processes involved in glass melts. Based upon contributions by renowned authors and scientists working with glass melt systems, Properties of Glass-Forming Melts is an excellent compilation of the current knowledge on property data, mechanisms, measurement techniques, and str


Nuclear Wastes

Nuclear Wastes

Author: National Research Council

Publisher: National Academies Press

Published: 1996-02-23

Total Pages: 590

ISBN-13: 0309052262

DOWNLOAD EBOOK

Disposal of radioactive waste from nuclear weapons production and power generation has caused public outcry and political consternation. Nuclear Wastes presents a critical review of some waste management and disposal alternatives to the current national policy of direct disposal of light water reactor spent fuel. The book offers clearcut conclusions for what the nation should do today and what solutions should be explored for tomorrow. The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted to nuclides that are either stable or radioactive with short half-lives. The volume provides detailed findings and conclusions about the status and feasibility of plutonium extraction and more advanced separations technologies, as well as three principal transmutation concepts for commercial reactor spent fuel. The book discusses nuclear proliferation; the U.S. nuclear regulatory structure; issues of health, safety and transportation; the proposed sale of electrical energy as a means of paying for the transmutation system; and other key issues.


Strategy and Methodology for Radioactive Waste Characterization

Strategy and Methodology for Radioactive Waste Characterization

Author: International Atomic Energy Agency

Publisher: IAEA

Published: 2007

Total Pages: 188

ISBN-13:

DOWNLOAD EBOOK

Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.