Controlling Charge-Transfer Interactions in Doped Semiconducting Polymers and Directly Measuring Charge Carrier Localization with the Vibrational Stark Effect

Controlling Charge-Transfer Interactions in Doped Semiconducting Polymers and Directly Measuring Charge Carrier Localization with the Vibrational Stark Effect

Author: Dane Andrew Stanfield

Publisher:

Published: 2021

Total Pages: 230

ISBN-13:

DOWNLOAD EBOOK

Semiconducting polymers show promise for use in a variety of applications such as photovoltaic cells, light emitting diodes, and thermoelectric generators. For many of these devices, the electronic properties are tuned through the introduction of chemical dopants. This dissertation is focused on understanding several key aspects of the chemical doping process. The first chapter gives an overview of semiconducting polymers, introduces doping by sequential processing methods and looks at how the chemical doping process works on a basic level. We also explore dopant transport methods, discuss the electrical and thermoelectrical characterization of these materials, and finally consider the structural morphology of conjugated polymer thin films. Chapter 2 takes an analytical approach to understanding how the underlying morphology and electrical/thermoelectrical properties of doped polymer films are affected when introducing the dopant either via the solutionphase or using vapor transport. Chapter 3 explores the fundamental charge transfer interactions that occur between polymer and dopant. We introduce a novel processing technique that enables the tunable production of dopant-polymer charge transfer complexes (CTCs), which represent a poorly understood but widely seen doping mechanism in these materials. We provide the first comprehensive picture of the forces that drive CTC formation and offer guidelines for limiting CTC occurrence in doped conjugated polymers as their electrical properties are usually undesirable. Finally, in Chapter 4 we solve a long-standing mystery in the literature of the highly variable vibrational spectra of certain dopant molecules, which should nominally show consistent and predictable frequencies. We show that the wide range of vibrational energies observed for these dopant molecules can be fully understood through the framework of the vibrational Stark effect. Our experimental evidence shows a clear and predictable shift for these modes as a function of their locally experienced electric field, which arises due to Coulomb interactions with the charge carriers on the polymer. Thus, the vibrational shifts of these dopant molecules are actually exquisite reporters on the local environment of the charge carriers in doped conjugated polymers. We use our experimentally-measured shifts to quantitatively estimate the change in polaron coherence length, the extent to which the charge carriers on the polymer spread over multiple polymer repeat units. These chapters cover a variety of themes which highlight the sometimes unexpected path from experiment to manuscript. I sincerely hope they can be of use to others who study similar systems and motivate additional works in the future.


Doping Of Semiconducting Polymers For Electronic Applications

Doping Of Semiconducting Polymers For Electronic Applications

Author: David Jones

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

One branch of modern electronics requires avoiding the high processing costs associated with inorganic semiconductors in order to create novel low-cost, mechanically flexible, and low-profile devices for the next generation of consumer devices. Organic semiconductors can be doped to improve their charge mobility and carrier density towards creating better polymer-based photovoltaics, organic thin-film transistors, and organic light-emitting diodes. Dopants offer one route to improved device performance, but the specific interactions between the dopant molecule and the semiconductor must be designed for the desired function.This work explores the effects of sulfonic acid groups on the behavior of the common organic semiconductor poly-(3-hexylthiophene) (P3HT). P3HT was chosen for its ubiquitous use in photovoltaics and other organic electronic applications. The doping of P3HT by sulfonic acid-containing moieties was explored initially as a method to replace the poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) electron blocking later at the photovoltaic transparent indium tin oxide electrode. Measurements of doped thiophene-based polymers were conducted in organic thin-film transistor geometries to measure the charge carrier densities. Additionally, spectroscopic evidence of doping complemented the transistor and photovoltaic studies. This work explores the extent to which P3HT can be doped at the highest density and how it may be used in modern organic electronics such as transistors, photovoltaics, and light-emitting diodes.


Impact of Chemical Doping on the Thermoelectric Charge Transport of Organic Semiconductors

Impact of Chemical Doping on the Thermoelectric Charge Transport of Organic Semiconductors

Author: Connor J. Boyle

Publisher:

Published: 2018

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The thermoelectric properties of organic semiconductors allow them to directly convert heat into electricity without the use of moving parts and to directly convert electricity into heat without the use of working fluids. These properties offer opportunities for the generation of electricity from non-conventional or renewable sources of heat and for refrigeration without the risk of leaking harmful working fluids at any length scale down to the nanoscale. Since organic materials are lightweight, flexible, and made from abundant resources, these opportunities could one day become affordable for widespread use and could be expanded to include specialized and otherwise difficult to reach applications, such as wearable refrigeration and electricity generation from anthropogenic heat. Since these properties are a result of how charge carriers in organic materials transfer energy upon conduction, measuring these properties also allows us to better understand the factors that influence how charge carriers carry energy during charge transport. One of the remaining challenges in developing organic thermoelectric materials for practical use is the preparation of n-type thermoelectric materials, which transport electrons as their charge carrier, since most n-type organic semiconductors are unstable in air due to electron transfer to oxygen gas. We synthesized three organic conjugated polymers based on electron deficient rylene diimides and a vinylene spacer - PDNDIV, PFNDIV, and PDIV - to study how these could be doped into n-type semiconductors and how long these persist in air. Each polymer was capable of electron transport, and PFNDIV was capable of remaining n-doped with electronic charges for at least one week in air. Blending conducting fillers into organic thermoelectric materials can alter their thermoelectric properties by altering the mechanism of charge transport. We blended the conductive filler SWNT into the organic conjugated polymer PBTDV2 and measured the thermoelectric properties. Although PBTDV2 was originally developed for use as an electron transporting polymer, all blends of SWNT with PBTDV2 had p-type, hole transporting, thermoelectric properties similar to those of oxygen-doped SWNT. We measured the thermoelectric properties of two p-type organic polymers - P3HT and PDPP4T - that were doped to achieve a high concentration of charge carriers as they spontaneously de-doped and decreased their charge carrier concentration. Modeling these thermoelectric properties revealed that the spatial distribution of dopants in the polymers impacted the how much energy was carried per charge carrier due to Coulombic interactions of the dopants with the charge carriers, and that more heterogeneous spatial distributions of dopants can limit the thermoelectric performance by limiting how much energy is carried per charge carrier. These findings aid in the future development of organic thermoelectric materials by highlighting the importance of doping organic thermoelectric materials in ways that achieve homogeneous spatial distributions of dopants.


Semiconducting Polymers

Semiconducting Polymers

Author: Georges Hadziioannou

Publisher: John Wiley & Sons

Published: 2006-12-15

Total Pages: 786

ISBN-13: 3527312714

DOWNLOAD EBOOK

The field of semiconducting polymers has attracted many researchers from a diversity of disciplines. Printed circuitry, flexible electronics and displays are already migrating from laboratory successes to commercial applications, but even now fundamental knowledge is deficient concerning some of the basic phenomena that so markedly influence a device's usefulness and competitiveness. This two-volume handbook describes the various approaches to doped and undoped semiconducting polymers taken with the aim to provide vital understanding of how to control the properties of these fascinating organic materials. Prominent researchers from the fields of synthetic chemistry, physical chemistry, engineering, computational chemistry, theoretical physics, and applied physics cover all aspects from compounds to devices. Since the first edition was published in 2000, significant findings and successes have been achieved in the field, and especially handheld electronic gadgets have become billion-dollar markets that promise a fertile application ground for flexible, lighter and disposable alternatives to classic silicon circuitry. The second edition brings readers up-to-date on cutting edge research in this field.


Halide Perovskites

Halide Perovskites

Author: Tze-Chien Sum

Publisher: John Wiley & Sons

Published: 2019-03-25

Total Pages: 312

ISBN-13: 3527341110

DOWNLOAD EBOOK

Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.


Organic Conductors

Organic Conductors

Author: Jean-Pierre Farges

Publisher: CRC Press

Published: 2022-09-16

Total Pages: 874

ISBN-13: 1000723585

DOWNLOAD EBOOK

This work examines all aspects of organic conductors, detailing recent theoretical concepts and current laboratory methods of synthesis, measurement, control and analysis. It describes advances in molecular-scale engineering, including switching and memory systems, Schottky and electroluminescent diodes, field-effect transistors, and photovoltaic devices and solar cells.


Semiconductor Nanocrystals

Semiconductor Nanocrystals

Author: Alexander L. Efros

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 277

ISBN-13: 1475736770

DOWNLOAD EBOOK

A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.


Hybrid Organic-Inorganic Interfaces

Hybrid Organic-Inorganic Interfaces

Author: Marie Helene Delville

Publisher: John Wiley & Sons

Published: 2018-04-09

Total Pages: 1010

ISBN-13: 3527342559

DOWNLOAD EBOOK

Das erste Handbuch und gut zugängliche Referenzwerk zu diesem zunehmend wichtigen Thema erläutert in einem anwendungsorientierten Ansatz Synthese, Design, Charakterisierung und Simulation von Grenzflächen bei hybriden organisch-anorganischen Materialien.


Visualizing Chemistry

Visualizing Chemistry

Author: National Research Council

Publisher: National Academies Press

Published: 2006-06-01

Total Pages: 222

ISBN-13: 030916463X

DOWNLOAD EBOOK

Scientists and engineers have long relied on the power of imaging techniques to help see objects invisible to the naked eye, and thus, to advance scientific knowledge. These experts are constantly pushing the limits of technology in pursuit of chemical imagingâ€"the ability to visualize molecular structures and chemical composition in time and space as actual events unfoldâ€"from the smallest dimension of a biological system to the widest expanse of a distant galaxy. Chemical imaging has a variety of applications for almost every facet of our daily lives, ranging from medical diagnosis and treatment to the study and design of material properties in new products. In addition to highlighting advances in chemical imaging that could have the greatest impact on critical problems in science and technology, Visualizing Chemistry reviews the current state of chemical imaging technology, identifies promising future developments and their applications, and suggests a research and educational agenda to enable breakthrough improvements.