This book aims to provide readers with some of the current trends in microemulsions as scalable chemical nanoreactors. The chapters include discussions on microemulsions as reaction media, taking advantage of both the special behavior of trapped water inside their microdroplets and their potential use as a template for nanomaterials. The information contained in this book covers topics that will be of interest to students and researchers in physical chemistry, chemical engineering, and material science. In addition, this book will serve as a tribute in memoriam to Prof. Julio Casado, Professor of Physical Chemistry at the Universities of Santiago de Compostela and Salamanca and Doctor Honoris Causa from the University of Vigo, who died on April 2, 2018. Sit tibi terra levis.
This is the second volume in the series of books covering practical aspects of synthesis and characterization of various categories of nanomaterials taking into consideration the most up to date research publications. The aim of the book series is to provide students and researchers practical information such as synthetic procedures, characterization protocols and mechanistic insights to enable them to either reproduce well established methods or plan for new syntheses of size and shaped controlled nanomaterials. The second volume focuses on multifunctional nanomaterials.
Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control deals with the synthesis of metal nanoclusters along all known methodologies. Physical and chemical properties of metal nanoclusters relevant to their applications in chemical processing and materials science are covered thoroughly. Special attention is given to the role of metal nanoclusters size and shape in catalytic processes and catalytic applications relevant to industrial chemical processing.An excellent text for expanding the knowledge on the chemistry and physics of metal nanoclusters. Divided in two parts; Part I deals with general aspects of the matter and Part II has to be considered a useful handbook dealing with the production of metal nanoclusters, especially from their size-control point of view.* Divided into two parts for ease of reference: general and operational * Separation of synthetic aspects, physical properties and applications* Specific attention is given to the task of metal nanoclusters size-control
The need to improve both the efficiency and environmental acceptability of industrial processes is driving the development of heterogeneous catalysts across the chemical industry, including commodity, specialty and fine chemicals and in pharmaceuticals and agrochemicals. Drawing on international research, Supported Catalysts and their Applications discusses aspects of the design, synthesis and application of solid supported reagents and catalysts, including supported reagents for multi-step organic synthesis; selectivity in oxidation catalysis; mesoporous molecular sieve catalysts; and the use of Zeolite Beta in organic reactions. In addition, the two discrete areas of heterogeneous catalysis (inorganic oxide materials and polymer-based catalysts) that were developing in parallel are now shown to be converging, which will be of great benefit to the whole field. Providing a snapshot of the state-of-the-art in this fast-moving field, this book will be welcomed by industrialists and researchers, particularly in the agrochemicals and pharmaceuticals industries.
This book offers a detailed discussion of the complex magnetic behavior of magnetic nanosystems, with its myriad of geometries (e.g. core-shell, heterodimer and dumbbell) and its different applications. It provides a broad overview of the numerous current studies concerned with magnetic nanoparticles, presenting key examples and an in-depth examination of the cutting-edge developments in this field. This contributed volume shares the latest developments in nanomagnetism with a wide audience: from upper undergraduate and graduate students to advanced specialists in both academia and industry. The first three chapters serve as a primer to the more advanced content found later in the book, making it an ideal introductory text for researchers starting in this field. It provides a forum for the critical evaluation of many aspects of complex nanomagnetism that are at the forefront of nanoscience today. It also presents highlights from the extensive literature on the topic, including the latest research in this field.
Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.
Since four decades, rapid detection and monitoring in clinical and food diagnostics and in environmental and biodefense have paved the way for the elaboration of electrochemical biosensors. Thanks to their adaptability, ease of use in relatively complex samples, and their portability, electrochemical biosensors now are one of the mainstays of analy
Serving as the only systematic and comprehensive treatment on the topic of nanoparticle-based materials, this book covers synthesis, characterization, assembly, shaping and sintering of all types of nanoparticles including metals, ceramics, and semiconductors. A single-authored work, it is suitable as a graduate-level text in nanomaterials courses.
Among the various nanomaterials, inorganic nanoparticles are extremely important in modern technologies. They can be easily and cheaply synthesized and mass produced, and for this reason, they can also be more readily integrated into applications. Inorganic Nanoparticles: Synthesis, Applications, and Perspectives presents an overview of these special materials and explores the myriad ways in which they are used. It addresses a wide range of topics, including: Application of nanoparticles in magnetic storage media Use of metal and oxide nanoparticles to improve performance of oxide thin films as conducting media in commercial gas and vapor sensors Advances in semiconductors for light-emitting devices and other areas related to the energy sector, such as solar energy and energy storage devices (fuel cells, rechargeable batteries, etc.) The expanding role of nanosized particles in the field of catalysis, art conservation, and biomedicine The book’s contributors address the growing global interest in the application of inorganic nanoparticles in various technological sectors. Discussing advances in materials, device fabrication, and large-scale production—all of which are urgently required to reduce global energy demands—they cover innovations in areas such as solid-state lighting, detailing how it still offers higher efficiency but higher costs, compared to conventional lighting. They also address the impact of nanotechnology in the biomedical field, focusing on topics such as quantum dots for bioimaging, nanoparticle-based cancer therapy, drug delivery, antibacterial agents, and more. Fills the informational gap on the wide range of applications for inorganic nanoparticles in areas including biomedicine, electronics, storage media, conservation of cultural heritage, optics, textiles, and cosmetics Assembling work from an array of experts at the top of their respective fields, this book delivers a useful analysis of the vast scope of existing and potential applications for inorganic nanoparticles. Versatile as either a professional research resource or textbook, this effective tool elucidates fundamentals and current advances associated with design, characterization, and application development of this promising and ever-evolving device.
Nonstoichiometric Oxides discusses the thermodynamic and structural studies of nonstoichiometric oxides. This eight-chapter text also covers the defect-defect interactions in these compounds. The introductory chapters describe the thermodynamic properties of nonstoichiometric oxides in terms of defect complexes using the classical thermodynamic principles and from a statistical thermodynamics point of view. These chapters also include statistical thermodynamic models that indicate the ordered nonstoichiometric phase range in these oxides. The subsequent chapters examine the transport properties, such as diffusion and electrical conductivity. Diffusion theories and experimental diffusion coefficients for several systems, as well as the electrical properties of the highly defective ionic and mixed oxide conductor, are specifically tackled in these chapters. The concluding chapters present the pertinent results obtained in nonstoichiometric oxide structural studies using high-resolution electron microscopy and X-ray and neutron diffraction. Inorganic chemists and inorganic chemistry teachers and students will greatly appreciate this book.