Distributed Parameter Control Systems: Theory and Application is a two-part book consisting of 10 theoretical and five application-oriented chapters contributed by well-known workers in the distributed-parameter systems. The book covers topics of distributed parameter control systems in the areas of simulation, identification, state estimation, stability, control (optimal, stochastic, and coordinated), numerical approximation methods, optimal sensor, and actuator positioning. Five applications works include chemical reactors, heat exchangers, petroleum reservoirs/aquifers, and nuclear reactors. The text will be a useful reference for both graduate students and professional researchers working in the field.
VI 5.3 Proof of the measurement-feedback result. 144 5.4 Relaxation of the a priori assumptions .. 165 5.4.1 Including the feedthroughs ... 165 5.4.2 How to 'remove' the regularity assumptions 174 6 Examples and conclusions 177 6.1 Delay systems in state-space ... 177 6.1.1 Dynamic controllers for delay systems. 180 184 6.1.2 A linear quadratic control problem . . 6.1.3 Duality ... 189 6.2 The mixed-sensitivity problem for delay systems 192 6.2.1 Introduction and statement of the problem. 192 6.2.2 Main result ... 194 6.3 Conclusions and directions for future research. 200 A Stability theory 205 A.1 205 A.2 206 B Differentiability and some convergence results 207 B.l 207 208 B.2 B.3 209 209 B.4 B.5 209 B.6 211 B.7 213 214 C The invariant zeros condition C.1 214 221 D The relation between P, Q and P 221 D.1 ... Bibliography 230 239 Index Preface Control of distributed parameter systems is a fascinating and challenging top ic, from both a mathematical and an applications point of view. The same can be said about Hoc-control theory, which has become very popular lately. I am therefore pleased to present in this book a complete treatment of the state-space solution to the Hoo-control problem for a large class of distributed parameter systems.
Control of Distributed Parameter Systems covers the proceedings of the Second IFAC Symposium, Coventry, held in Great Britain from June 28 to July 1, 1977. The book focuses on the methodologies, processes, and techniques in the control of distributed parameter systems, including boundary value control, digital transfer matrix, and differential equations. The selection first discusses the asymptotic methods in the optimal control of distributed systems; applications of distributed parameter control theory of a survey; and dual variational inequalities for external eigenvalue problems. The book also ponders on stochastic differential equations in Hilbert space and their application to delay systems and linear quadratic optimal control problem over an infinite time horizon for a class of distributed parameter systems. The manuscript investigates the semigroup approach to boundary value control and stability of nonlinear distributed parameter systems. Topics include boundary control action implemented through a dynamical system; classical boundary value controls; stability of nonlinear systems; and feedback control on the boundary. The text also focuses on the functional analysis interpretation of Lyapunov stability; method of multipliers for a class distributed parameter systems; and digital transfer matrix approach to distributed system simulation. The selection is a dependable source of data for readers interested in the control of distributed parameter systems.
In this unified account of the mathematical theory of distributed parameter systems (DPS), the authors cover all major aspects of the control, estimation, and identification of such systems, and their application in engineering problems. The first part of the book is devoted to the basic results in deterministic and stochastic partial differential equations, which are applied to the optimal control and estimation theories for DPS. Part two then applies this knowledge in an engineering setting, discussing optimal estimators, optimal sensor and actuator locations, and computational techniques.
A Practical Guide to Geometric Regulation for Distributed Parameter Systems provides an introduction to geometric control design methodologies for asymptotic tracking and disturbance rejection of infinite-dimensional systems. The book also introduces several new control algorithms inspired by geometric invariance and asymptotic attraction for a wid
An examination of progress in mathematical control theory applications. It provides analyses of the influence and relationship of nonlinear partial differential equations to control systems and contains state-of-the-art reviews, including presentations from a conference co-sponsored by the National Science Foundation, the Institute of Mathematics and its Applications, the University of Minnesota, and Texas A&M University.
"This volume is a textbook on linear control systems with an emphasis on stochastic optimal control with solution methods using spectral factorization in line with the original approach of N. Wiener. Continuous-time and discrete-time versions are presented in parallel.... Two appendices introduce functional analytic concepts and probability theory, and there are 77 references and an index. The chapters (except for the last two) end with problems.... [T]he book presents in a clear way important concepts of control theory and can be used for teaching." —Zentralblatt Math "This is a textbook intended for use in courses on linear control and filtering and estimation on (advanced) levels. Its major purpose is an introduction to both deterministic and stochastic control and estimation. Topics are treated in both continuous time and discrete time versions.... Each chapter involves problems and exercises, and the book is supplemented by appendices, where fundamentals on Hilbert and Banach spaces, operator theory, and measure theoretic probability may be found. The book will be very useful for students, but also for a variety of specialists interested in deterministic and stochastic control and filtering." —Applications of Mathematics "The strength of the book under review lies in the choice of specialized topics it contains, which may not be found in this form elsewhere. Also, the first half would make a good standard course in linear control." —Journal of the Indian Institute of Science
This volume presents state-of-the-art reports on the theory, and current and future applications of control of distributed parameter systems. The papers cover the progress not only in traditional methodology and pure research in control theory, but also the rapid growth of its importance for different applications. This title will be of interest to researchers working in the areas of mathematics, automatic control, computer science and engineering.