Control of Integral Processes with Dead Time provides a unified and coherent review of the various approaches devised for the control of integral processes, addressing the problem from different standpoints. In particular, the book treats the following topics: How to tune a PID controller and assess its performance; How to design a two-degree-of-freedom control scheme in order to deal with both the set-point following and load disturbance rejection tasks; How to modify the basic Smith predictor control scheme in order to cope with the presence of an integrator in the process; and how to address the presence of large process dead times. The methods are presented sequentially, highlighting the evolution of their rationale and implementation and thus clearly characterising them from both academic and industrial perspectives.
This text introduces the fundamental techniques for controlling dead-time processes from simple monovariable to complex multivariable cases. Dead-time-process-control problems are studied using classical proportional-integral-differential (PID) control for the simpler examples and dead-time-compensator (DTC) and model predictive control (MPC) methods for progressively more complex ones. Downloadable MATLAB® code makes the examples and ideas more convenient and simpler.
This book is aimed at engineers and technicians who need to have a clear, practical understanding of the essentials of process control, loop tuning and how to optimize the operation of their particular plant or process. The reader would typically be involved in the design, implementation and upgrading of industrial control systems. Mathematical theory has been kept to a minimum with the emphasis throughout on practical applications and useful information.This book will enable the reader to:* Specify and design the loop requirements for a plant using PID control* Identify and apply the essential building blocks in automatic control* Apply the procedures for open and closed loop tuning* Tune control loops with significant dead-times* Demonstrate a clear understanding of analog process control and how to tune analog loops* Explain concepts used by major manufacturers who use the most up-to-date technology in the process control field·A practical focus on the optimization of process and plant·Readers develop professional competencies, not just theoretical knowledge·Reduce dead-time with loop tuning techniques
A Real- Time Approach to Process Control provides the reader with both a theoretical and practical introduction to this increasingly important approach. Assuming no prior knowledge of the subject, this text introduces all of the applied fundamentals of process control from instrumentation to process dynamics, PID loops and tuning, to distillation, multi-loop and plant-wide control. In addition, readers come away with a working knowledge of the three most popular dynamic simulation packages. The text carefully balances theory and practice by offering readings and lecture materials along with hands-on workshops that provide a 'virtual' process on which to experiment and from which to learn modern, real time control strategy development. As well as a general updating of the book specific changes include: A new section on boiler control in the chapter on common control loops A major rewrite of the chapters on distillation column control and multiple single-loop control schemes The addition of new figures throughout the text Workshop instructions will be altered to suit the latest versions of HYSYS, ASPEN and DYNSIM simulation software A new solutions manual for the workshop problems
The vast majority of automatic controllers used to compensate industrial processes are of PI or PID type. This book comprehensively compiles, using a unified notation, tuning rules for these controllers proposed over the last seven decades (1935OCo2005). The tuning rules are carefully categorized and application information about each rule is given. The book discusses controller architecture and process modeling issues, as well as the performance and robustness of loops compensated with PI or PID controllers. This unique publication brings together in an easy-to-use format material previously published in a large number of papers and books. This wholly revised second edition extends the presentation of PI and PID controller tuning rules, for single variable processes with time delays, to include additional rules compiled since the first edition was published in 2003. Sample Chapter(s). Chapter 1: Introduction (17 KB). Contents: Controller Architecture; Tuning Rules for PI Controllers; Tuning Rules for PID Controllers; Performance and Robustness Issues in the Compensation of FOLPD Processes with PI and PID Controllers. Readership: Control engineering researchers in academia and industry with an interest in PID control and control engineering practitioners using PID controllers. The book also serves as a reference for postgraduate and undergraduate students."
PID Control for Industrial Processes presents a clear, multidimensional representation of proportional - integral - derivative (PID) control for both students and specialists working in the area of PID control. It mainly focuses on the theory and application of PID control in industrial processes. It incorporates recent developments in PID control technology in industrial practice. Emphasis has been given to finding the best possible approach to develop a simple and optimal solution for industrial users. This book includes several chapters that cover a broad range of topics and priority has been given to subjects that cover real-world examples and case studies. The book is focused on approaches for controller tuning, i.e., method bases on open-loop plant tests and closed-loop experiments.
In this in-depth book, the authors address the concepts and terminology that are needed to work in the field of process control. The material is presented in a straightforward manner that is independent of the control system manufacturer. It is assumed that the reader may not have worked in a process plant environment and may be unfamiliar with the field devices and control systems. Much of the material on the practical aspects of control design and process applications is based on the authors personal experience gained in working with process control systems. Thus, the book is written to act as a guide for engineers, managers, technicians, and others that are new to process control or experienced control engineers who are unfamiliar with multi-loop control techniques. After the traditional single-loop and multi-loop techniques that are most often used in industry are covered, a brief introduction to advanced control techniques is provided. Whether the reader of this book is working as a process control engineer, working in a control group or working in an instrument department, the information will set the solid foundation needed to understand and work with existing control systems or to design new control applications. At various points in the chapters on process characterization and control design, the reader has an opportunity to apply what was learned using web-based workshops. The only items required to access these workshops are a high-speed Internet connection and a web browser. Dynamic process simulations are built into the workshops to give the reader a realistic "hands-on" experience. Also, one chapter of the book is dedicated to techniques that may be used to create process simulations using tools that are commonly available within most distributed control systems. At various points in the chapters on process characterization and control design, the reader has an opportunity to apply what was learned using web-based workshops. The only items required to access these workshops are a high-speed Internet connection and a web browser. Dynamic process simulations are built into the workshops to give the reader a realistic "hands-on" experience. Also, one chapter of the book is dedicated to techniques that may be used to create process simulations using tools that are commonly available within most distributed control systems. As control techniques are introduced, simple process examples are used to illustrate how these techniques are applied in industry. The last chapter of the book, on process applications, contains several more complex examples from industry that illustrate how basic control techniques may be combined to meet a variety of application requirements. As control techniques are introduced, simple process examples are used to illustrate how these techniques are applied in industry. The last chapter of the book, on process applications, contains several more complex examples from industry that illustrate how basic control techniques may be combined to meet a variety of application requirements.
Instrument Engineers' Handbook, Third Edition: Process Control provides information pertinent to control hardware, including transmitters, controllers, control valves, displays, and computer systems. This book presents the control theory and shows how the unit processes of distillation and chemical reaction should be controlled. Organized into eight chapters, this edition begins with an overview of the method needed for the state-of-the-art practice of process control. This text then examines the relative merits of digital and analog displays and computers. Other chapters consider the basic industrial annunciators and other alarm systems, which consist of multiple individual alarm points that are connected to a trouble contact, a logic module, and a visual indicator. This book discusses as well the data loggers available for process control applications. The final chapter deals with the various pump control systems, the features and designs of variable-speed drives, and the metering pumps. This book is a valuable resource for engineers.