Health care HVAC systems serve facilities in which the population is uniquely vulnerable and exposed to an elevated risk of health, fire, and safety hazard. These heavily regulated, high-stakes facilities undergo continuous maintenance, verification, inspection, and recertification, typically operate 24/7, and are owner occupied for long life. The HVAC systems in health care facilities must be carefully designed to be installed, operated and maintained in coordination with specialized buildings services, including emergency and normal power, plumbing and medical gas systems, automatic transport, fire protections and a myriad of IT systems, all within a limited building envelope.
"Provides a summary of what is understood within ASHRAE about dampness-related health risks in buildings along with suggestions for HVAC system designers that can help avoid such risks as well as a simple and easily recognizable description of dampness that is sufficient to increase the probability of negative health effects and practical quantitative tools and techniques that can alert managers to the risk of a building or an indoor space becoming damp to an extent that affects health in the future"--
Tall commercial office buildings present a series of design problems that differ from those that are found in other projects in the built environment. HVAC Design Guide for Tall Commercial Buildings provides guidance in both understanding the HVAC design problems of tall commercial office buildings and in detailing their alternative solutions.
The Sheet Metal/HVAC Pro Calc is a versatile calculator that enables tradesmen to calculate complex problems with dedicated key functions that are labeled in standard industry terms. The calculator has other advanced built-in construction-math functions to enable HVAC and sheet metal tradesmen to do their work alongside other trades. In addition to the built-in functions, this calculator can handle order of operation, using the parenthesis operators. It can also perform square, cube, square root, and cube root calculations. Plus, it works as a regular calculator with typical symbols. The calculator can be used to determine ArcK constant for convenient Arc length solutions. And it has an offset functions for "S-shaped" bends in ductwork. It can also help solve the layout for wrapper length, centerline radius, and the angle. Features CUSTOM HVAC & SHEET METAL functions let you simplify Test and Balance (TAB) with built-in Fan Law function: CFM, RPM, SP and BHP; velocity and velocity pressure: FPM, VP, MPS, KPa; ArcK constant for convenient Arc length solutions; and offset functions FUNCTIONS AND TERMINOLOGY consistent with sheet metal and HVAC trade terminology; x, y, r (radius), theta and Seg Radius functions; works in and converts between feet-inch-fractions, decimal feet and inches and metric also converts between polar and rectangular coordinates PARENTHESIS OPERATORS allows you to easily enter complex formulas; order of operations calculations retain familiar mathematical hierarchy as a default preference; trigonometric operation and sequence; and you can calculate square, square root, cube, and cube root; easy non-90 triangles and right-angle solutions for ductwork length and angles MEMORY STORAGE conveniently stores frequently used constants or interim solutions; Memory swap lets you easily insert stored values into current calculations and simultaneously store calculated values while recalling and displaying Memory contents; other settable User Preferences INVALUABLE TRADE TOOL PAYS FOR ITSELF by reducing headaches, saving time, and preventing expensive material errors on all your projects. Comes with a rugged shock, dust and moisture-resistant Armadillo Gear protective case, quick reference guide and complete user's guide, a long-life battery, and a one-year limited warranty.
With this authoritative, easy-to-follow guide, you can design and specify electrical systems for virtually any commercial building easily, efficiently, and accurately. You'll be able to submit lower bids, foster greater client satisfaction, and encounter fewer problems during construction. Electrical Design Guide for Commercial Buildings shows you step by step how to organize, layout and circuit, and complete the design of electrical power and telephone/communications systems for commercial and industrial buildings. Whether pro or novice, you'll find the key to better, faster, and cheaper electrical design for commercial buildings inside this book.
The ultimate reference book on the most frequently used HVAC data, chock-full of equations, data, and rules of thumb--a necessary addition to any library for mechanical, architectural, and electrical engineers, HVAC contractors and technicians, and others. Features over 216 equations for everything from air change rates to swimming pools to steel pipes. Includes both ASME and ASHRAE code information, and follows the CSI MasterFormat "TM."
THE DEFINITIVE GUIDE TO HVAC DESIGN This practical manual describes the HVAC system design process step by step using photographs, drawings, and a discussion of pertinent design considerations for different types of HVAC components and systems. Photographs of HVAC components in their installed condition illustrate actual size and proper configuration. Graphical representations of the components as they should appear on construction drawings are also included. Learn how to design HVAC systems accurately and efficiently from this detailed resource. HVAC DESIGN SOURCEBOOK COVERS: The design process HVAC load calculations Codes and standards Coordination with other design disciplines Piping, valves, and specialties Central plant equipment and design Air system equipment and design Piping and ductwork distribution systems Terminal equipment Noise and vibration control Automatic temperature controls Construction drawings
Moisture control is fundamental to the proper functioning of any building. Controlling moisture is important to protect occupants from adverse health effects and to protect the building, its mechanical systems and its contents from physical or chemical damage. Yet, moisture problems are so common in buildings, many people consider them inevitable. Excessive moisture accumulation plagues buildings throughout the United States, from tropical Hawaii to arctic Alaska and from the hot, humid Gulf Coast to the hot, dry Sonoran Desert. Between 1994 and 1998, the U.S. Environmental Protection Agency (EPA) Building Assessment Survey and Evaluation (BASE) study collected information about the indoor air quality of 100 randomly selected public and private office buildings in the 10 U.S. climatic regions.