Operator Theory, Analysis and the State Space Approach

Operator Theory, Analysis and the State Space Approach

Author: Harm Bart

Publisher: Springer

Published: 2018-12-30

Total Pages: 499

ISBN-13: 3030042693

DOWNLOAD EBOOK

This volume is dedicated to Rien Kaashoek on the occasion of his 80th birthday and celebrates his many contributions to the field of operator theory during more than fifty years. In the first part of the volume, biographical information and personal accounts on the life of Rien Kaashoek are presented. Eighteen research papers by friends and colleagues of Rien Kaashoek are included in the second part. Contributions by J. Agler, Z.A. Lykova, N.J. Young, J.A. Ball, G.J. Groenewald, S. ter Horst, H. Bart, T. Ehrhardt, B. Silbermann, J.M. Bogoya, S.M. Grudsky, I.S. Malysheva, A. Böttcher, E. Wegert, Z. Zhou, Y. Eidelman, I. Haimovici, A.E. Frazho, A.C.M. Ran, B. Fritzsche, B. Kirstein, C.Madler, J. J. Jaftha, D.B. Janse van Rensburg, P. Junghanns, R. Kaiser, J. Nemcova, M. Petreczky, J.H. van Schuppen, L. Plevnik, P. Semrl, A. Sakhnovich, F.-O. Speck, S. Sremac, H.J. Woerdeman, H. Wolkowicz and N. Vasilevski.


Operator Theory and Analysis

Operator Theory and Analysis

Author: H. Bart

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 460

ISBN-13: 3034882831

DOWNLOAD EBOOK

On November 12-14, 1997 a workshop was held at the Vrije Universiteit Amsterdam on the occasion of the sixtieth birthday ofM. A. Kaashoek. The present volume contains the proceedings of this workshop. The workshop was attended by 44 participants from all over the world: partici pants came from Austria, Belgium, Canada, Germany, Ireland, Israel, Italy, The Netherlands, South Africa, Switzerland, Ukraine and the USA. The atmosphere at the workshop was very warm and friendly. There where 21 plenary lectures, and each lecture was followed by a lively discussion. The workshop was supported by: the Vakgroep Wiskunde of the Vrije Univer siteit, the department of Mathematics and Computer Science of the Vrije Univer siteit, the Stichting VU Computer Science & Mathematics Research Centre, the Thomas Stieltjes Institute for Mathematics, and the department of Economics of the Erasmus University Rotterdam. The organizers would like to take this opportunity to express their gratitude for the support. Without it the workshop would not have been so successful as it was. Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Photograph of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Curriculum Vitae of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv List of Publications of M. A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix l. Gohberg Opening Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi H. Bart, A. C. M. Ran and H. I. Woerdeman Personal Reminiscences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxv V. Adamyan and R. Mennicken On the Separation of Certain Spectral Components of Selfadjoint Operator Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Conditions for the Separation of Spectral Components . . . . . . . 4 3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Toeplitz Approach to Problems of the Uncertainty Principle

Toeplitz Approach to Problems of the Uncertainty Principle

Author: Alexei Poltoratski

Publisher: American Mathematical Soc.

Published: 2015-03-07

Total Pages: 226

ISBN-13: 1470420171

DOWNLOAD EBOOK

The Uncertainty Principle in Harmonic Analysis (UP) is a classical, yet rapidly developing, area of modern mathematics. Its first significant results and open problems date back to the work of Norbert Wiener, Andrei Kolmogorov, Mark Krein and Arne Beurling. At present, it encompasses a large part of mathematics, from Fourier analysis, frames and completeness problems for various systems of functions to spectral problems for differential operators and canonical systems. These notes are devoted to the so-called Toeplitz approach to UP which recently brought solutions to some of the long-standing problems posed by the classics. After a short overview of the general area of UP the discussion turns to the outline of the new approach and its results. Among those are solutions to Beurling's Gap Problem in Fourier analysis, the Type Problem on completeness of exponential systems, a problem by Pólya and Levinson on sampling sets for entire functions, Bernstein's problem on uniform polynomial approximation, problems on asymptotics of Fourier integrals and a Toeplitz version of the Beurling-Malliavin theory. One of the main goals of the book is to present new directions for future research opened by the new approach to the experts and young analysts. A co-publication of the AMS and CBMS.


Series in Banach Spaces

Series in Banach Spaces

Author: Vladimir Kadets

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 162

ISBN-13: 3034891962

DOWNLOAD EBOOK

Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of series is a part of the theory of sequences, which deals with their convergence, asymptotic behavior, etc. The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied. The phenomenon that a numerical series can change its sum when the order of its terms is changed is one of the most impressive facts encountered in a university analysis course. The present book is devoted precisely to this aspect of the theory of series whose terms are elements of Banach (as well as other topological linear) spaces. The exposition focuses on two complementary problems. The first is to char acterize those series in a given space that remain convergent (and have the same sum) for any rearrangement of their terms; such series are usually called uncon ditionally convergent. The second problem is, when a series converges only for certain rearrangements of its terms (in other words, converges conditionally), to describe its sum range, i.e., the set of sums of all its convergent rearrangements.


Operator Extensions, Interpolation of Functions and Related Topics

Operator Extensions, Interpolation of Functions and Related Topics

Author: A. Gheondea

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 225

ISBN-13: 303488575X

DOWNLOAD EBOOK

Since 1976 the Institute of Mathematics of the Romanian Academy (formerly the Department of Mathematics of INCREST) and the Faculty of Mathematics (formerly the Faculty of Sciences) of the University ofTimi~oara have organized several Con ferences on Operator Theory. These Conferences were held yearly in Timi~oara (or in Timi~oara and Herculane) and beginning with 1985 they were held in Bucharest (1985,1986), in Timi~oara (1988) and in Predeal (1990). At the beginning, these Conferences answered the need of a part of the Romanian Mathematical Community ofexploring other forms of survival, after the dissolution of the Institute of Mathematics in 1975. Soon, these meetings evolved to International Conferences with a broad participation and where important results in Operator Theory and Operator Algebras and their interplay with Complex Function Theory, Differential Equations, Mathematical Physics, System Theory, etc. were presented. The 14th Conference on Operator Theory was held between June 1st and June 5th 1992, at the University ofTimi~oara. It was partially supported by the Institute of Mathematics of the Romanian Academy and by the Faculty of Mathematics of the University ofTimi~oara. Another important contribution towards covering the costs of this meeting came from The Soros Foundation for an Open Society. Without this generous help the organizing of this event would be impossible. Since 1980, the Proceedings of OT Conferences were published by Birkhauser Verlag in the series Operator Theory: Advances and Applications. The abstracts of the talks were collected in the Conference Report, published by the University of Timi~oara.


Harmonic Analysis and Boundary Value Problems in the Complex Domain

Harmonic Analysis and Boundary Value Problems in the Complex Domain

Author: Mkhitar M. Djrbashian

Publisher: Springer Science & Business Media

Published: 1993

Total Pages: 280

ISBN-13: 9783764328559

DOWNLOAD EBOOK

1 Preliminary results. Integral transforms in the complex domain.- 1.1 Introduction.- 1.2 Some identities.- 1.3 Integral representations and asymptotic formulas.- 1.4 Distribution of zeros.- 1.5 Identities between some Mellin transforms.- 1.6 Fourier type transforms with Mittag-Leffler kernels.- 1.7 Some consequences.- 1.8 Notes.- 2 Further results. Wiener-Paley type theorems.- 2.1 Introduction.- 2.2 Some simple generalizations of the first fundamental Wiener-Paley theorem.- 2.3 A general Wiener-Paley type theorem and some particular results.- 2.4 Two important cases of the general Wiener-Paley type theorem.- 2.5 Generalizations of the second fundamental Wiener-Paley theorem.- 2.6 Notes.- 3 Some estimates in Banach spaces of analytic functions.- 3.1 Introduction.- 3.2 Some estimates in Hardy classes over a half-plane.- 3.3 Some estimates in weighted Hardy classes over a half-plane.- 3.4 Some estimates in Banach spaces of entire functions of exponential type.- 3.5 Notes.- 4 Interpolation series expansions in spacesW1/2, ?p, ?of entire functions.- 4.1 Introduction.- 4.2 Lemmas on special Mittag-Leffler type functions.- 4.3 Two special interpolation series.- 4.4 Interpolation series expansions.- 4.5 Notes.- 5 Fourier type basic systems inL2(0, ?).- 5.1 Introduction.- 5.2 Biorthogonal systems of Mittag-Leffler type functions and their completeness inL2(0, ?).- 5.3 Fourier series type biorthogonal expansions inL2(0, ?).- 5.4 Notes.- 6 Interpolation series expansions in spacesWs+1/2, ?p, ?of entire functions.- 6.1 Introduction.- 6.2 The formulation of the main theorems.- 6.3 Auxiliary relations and lemmas.- 6.4 Further auxiliary results.- 6.5 Proofs of the main theorems.- 6.6 Notes.- 7 Basic Fourier type systems inL2spaces of odd-dimensional vector functions.- 7.1 Introduction.- 7.2 Some identities.- 7.3 Biorthogonal systems of odd-dimensional vector functions.- 7.4 Theorems on completeness and basis property.- 7.5 Notes.- 8 Interpolation series expansions in spacesWs, ?p, ?of entire functions.- 8.1 Introduction.- 8.2 The formulation of the main interpolation theorem.- 8.3 Auxiliary relations and lemmas.- 8.4 Further auxiliary results.- 8.5 The proof of the main interpolation theorem.- 8.6 Notes.- 9 Basic Fourier type systems inL2spaces of even-dimensional vector functions.- 9.1 Introduction.- 9.2 Some identities.- 9.3 The construction of biorthogonal systems of even-dimensional vector functions.- 9.4 Theorems on completeness and basis property.- 9.5 Notes.- 10 The simplest Cauchy type problems and the boundary value problems connected with them.- 10.1 Introduction.- 10.2 Riemann-Liouville fractional integrals and derivatives.- 10.3 A Cauchy type problem.- 10.4 The associated Cauchy type problem and the analog of Lagrange formula.- 10.5 Boundary value problems and eigenfunction expansions.- 10.6 Notes.- 11 Cauchy type problems and boundary value problems in the complex domain (the case of odd segments).- 11.1 Introduction.- 11.2 Preliminaries.- 11.3 Cauchy type problems and boundary value problems containing the operators $$ {\mathbb{L}_{s + 1/2}}$$ and $$ \mathbb{L}_{s + 1/2} *$$.- 11.4 Expansions inL2{?2s+1(?)} in terms of Riesz bases.- 11.5 Notes.- 12 Cauchy type problems and boundary value problems in the complex domain (the case of even segments).- 12.1 Introduction.- 12.2 Preliminaries.- 12.3 Cauchy type problems and boundary value problems containing the operators $${{\mathbb{L}}_{s}} $$ and $$ \mathbb{L}_{s} *$$.- 12.4 Expansions inL2{?2s(?)} in terms of Riesz bases.- 12.5


Operator Theory and Boundary Eigenvalue Problems

Operator Theory and Boundary Eigenvalue Problems

Author: I. Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 327

ISBN-13: 3034891067

DOWNLOAD EBOOK

The Workshop on Operator Theory and Boundary Eigenvalue Problems was held at the Technical University, Vienna, Austria, July 27 to 30, 1993. It was the seventh workshop in the series of IWOTA (International Workshops on Operator Theory and Applications). The main topics at the workshop were interpolation problems and analytic matrix functions, operator theory in spaces with indefinite scalar products, boundary value problems for differential and functional-differential equations and systems theory and control. The workshop covered different aspects, starting with abstract operator theory up to contrete applications. The papers in these proceedings provide an accurate cross section of the lectures presented at the workshop. This book will be of interest to a wide group of pure and applied mathematicians.