This proceedings volume contains papers presented at the Eight Workshop on Continuous Advances in QCD (quantum chromodynamics), held at the William I Fine Theoretical Physics Institute, USA on May 15-18, 2008.
This proceedings volume contains papers presented at the Eight Workshop on Continuous Advances in QCD (quantum chromodynamics), held at the William I Fine Theoretical Physics Institute, USA on May 15?18, 2008.
The purpose of the Workshop is to have intensive discussions on both theoretical and phenomenological aspects of strong coupling gauge theories (SCGTs), with particular emphasis on the model buildings to be tested in the LHC experiments. Dynamical issues are discussed in lattice simulations and various analytical methods. This proceedings volume is a collection of the presentations made at the Workshop by many leading scientists in the field.
The purpose of the Workshop is to have intensive discussions on both theoretical and phenomenological aspects of strong coupling gauge theories (SCGTs), with particular emphasis on the model buildings to be tested in the LHC experiments. Dynamical issues are discussed in lattice simulations and various analytical methods. This proceedings volume is a collection of the presentations made at the Workshop by many leading scientists in the field.
This book introduces a variety of aspects in nonperturbative Quantum Chromodynamics (QCD), focusing on the topological objects present in gauge theories. These objects, like magnetic monopoles, instantons, instanto-dysons, sphalerons, QCD flux tubes, etc, are first introduced individually and, later, treated collectively. As ensembles, they produce various phenomena that can be modeled numerically in lattice gauge theories and such collective effects, produced on the lattice, are extensively discussed in some chapters. In turn, the notion of duality, which is crucial in modern field/string theories, is elucidated by taking into consideration the electric-magnetic duality, the Poisson duality, and the AdS/CFT duality. This monograph is based on various lectures given by Edward Shuryak at Stony Brook during the last three decades and it is meant for advanced graduate students and young researchers in theoretical and mathematical physics who are willing to consolidate their knowledge in the topological phenomena encountered in fundamental QCD research.
Vladimir Naumovich Gribov was one of the most outstanding theoretical physicists, a key figure in the development of modern elementary particle physics. His insights into the physics of quantum anomalies and the origin of classical solutions (instantons), the notion of parton systems and their evolution in soft and hard hadron interactions, the first theory of neutrino oscillations and conceptual problems of quantization of non-Abelian fields uncovered by him, have left a lasting impact on the theoretical physics of the 21st century.Gribov-80 — the fourth in a series of memorial workshops for V N Gribov — was organized on the occasion of his 80th birthday in May 2010, at the Abdus Salam International Centre for Theoretical Physics. The workshop paid tribute to Gribov's great achievements and brought close colleagues, younger researchers and leading experts together to display the new angles of the Gribov heritage at the new energy frontier opened up by the Large Hadron Collider.The book is a collection of the presentations made at the workshop.
This introduction to quantum chromodynamics presents the basic concepts and calculations in a clear and didactic style accessible to those new to the field. Readers will find useful methods for obtaining numerical results, including pure gauge theory and quenched spectroscopy.
This book introduces the phenomenology and theory of hadron form factors in a consistent manner, deriving step-by-step the key equations, defining the form factors from the matrix elements of hadronic transitions and deriving their symmetry relations. Explained are several general concepts of particle theory and phenomenology exemplified by hadron form factors. The main emphasis here is on learning the analytical methods in particle phenomenology. Many examples of hadronic processes involving form factors are considered, from the pion electromagnetic scattering to heavy B-meson decays. In the second part of the book, modern techniques of the form factor calculation, based on the method of sum rules in the theory of strong interactions, quantum chromodynamics, are introduced in an accessible manner. This book will be a useful guide for graduate students and early-career researchers working in the field of particle phenomenology and experiments. Features: • The first book to address the phenomenology of hadron form factors at a pedagogical level in one coherent volume • Contains up-to-date descriptions of the most important form factors of the electroweak transitions investigated in particle physics experiments
Quantum Field Theory is now well recognized as a powerful tool not only in Particle Physics but also in Nuclear Physics, Condensed Matter Physics, Solid State Physics and even in Mathematics. In this book some current applications of Quantum Field Theory to those areas of modern physics and mathematics are collected, in order to offer a deeper understanding of known facts and unsolved problems.