This unique book combines classical and contemporary methods of cryptology with a historical perspective. The interaction between the material in the book and the supplementary software package, CAP, allows readers to gain insights into cryptology and give them real hands-on experience working with ciphers. (Midwest).
Cryptology is the art and science of secure communication over insecure channels. The primary aim of this book is to provide a self-contained overview of recent cryptologic achievements and techniques in a form that can be understood by readers having no previous acquaintance with cryptology. It can thus be used as independent reading by whoever wishes to get started on the subject. An extensive bibliography of 250 references is included to help the reader deepen his or her understanding and go beyond the topics treated here. This book can also be used as preliminary material for an introductory course on cryptology. Despite its simplicity, it covers enough state-of-the-art material to be nevertheless of interest to the specialist. After a survey of the main secret and public key techniques, various applications are discussed. The last chapter describes 'quantum cryptography', a revolutionary approach to cryptography that remains secure even against an opponent with unlimited computing power. Quantum crytography is based on the principles of quantum physics.
Now the most used texbook for introductory cryptography courses in both mathematics and computer science, the Third Edition builds upon previous editions by offering several new sections, topics, and exercises. The authors present the core principles of modern cryptography, with emphasis on formal definitions, rigorous proofs of security.
The aim of this text is to treat selected topics of the subject of contemporary cryptology, structured in five quite independent but related themes: Efficient distributed computation modulo a shared secret, multiparty computation, modern cryptography, provable security for public key schemes, and efficient and secure public-key cryptosystems.
The field of cryptography has experienced an unprecedented development in the past decade and the contributors to this book have been in the forefront of these developments. In an information-intensive society, it is essential to devise means to accomplish, with information alone, every function that it has been possible to achieve in the past with documents, personal control, and legal protocols (secrecy, signatures, witnessing, dating, certification of receipt and/or origination). This volume focuses on all these needs, covering all aspects of the science of information integrity, with an emphasis on the cryptographic elements of the subject. In addition to being an introductory guide and survey of all the latest developments, this book provides the engineer and scientist with algorithms, protocols, and applications. Of interest to computer scientists, communications engineers, data management specialists, cryptographers, mathematicians, security specialists, network engineers.
Whether you're new to the field or looking to broaden your knowledge of contemporary cryptography, this newly revised edition of an Artech House classic puts all aspects of this important topic into perspective. Delivering an accurate introduction to the current state-of-the-art in modern cryptography, the book offers you an in-depth understanding of essential tools and applications to help you with your daily work. The second edition has been reorganized and expanded, providing mathematical fundamentals and important cryptography principles in the appropriate appendixes, rather than summarized at the beginning of the book. Now you find all the details you need to fully master the material in the relevant sections. This allows you to quickly delve into the practical information you need for your projects. Covering unkeyed, secret key, and public key cryptosystems, this authoritative reference gives you solid working knowledge of the latest and most critical concepts, techniques, and systems in contemporary cryptography. Additionally, the book is supported with over 720 equations, more than 60 illustrations, and numerous time-saving URLs that connect you to websites with related information.
This book offers the beginning undergraduate student some of the vista of modern mathematics by developing and presenting the tools needed to gain an understanding of the arithmetic of elliptic curves over finite fields and their applications to modern cryptography. This gradual introduction also makes a significant effort to teach students how to produce or discover a proof by presenting mathematics as an exploration, and at the same time, it provides the necessary mathematical underpinnings to investigate the practical and implementation side of elliptic curve cryptography (ECC). Elements of abstract algebra, number theory, and affine and projective geometry are introduced and developed, and their interplay is exploited. Algebra and geometry combine to characterize congruent numbers via rational points on the unit circle, and group law for the set of points on an elliptic curve arises from geometric intuition provided by Bézout's theorem as well as the construction of projective space. The structure of the unit group of the integers modulo a prime explains RSA encryption, Pollard's method of factorization, Diffie–Hellman key exchange, and ElGamal encryption, while the group of points of an elliptic curve over a finite field motivates Lenstra's elliptic curve factorization method and ECC. The only real prerequisite for this book is a course on one-variable calculus; other necessary mathematical topics are introduced on-the-fly. Numerous exercises further guide the exploration.
Winner of an Outstanding Academic Title Award from CHOICE MagazineMost available cryptology books primarily focus on either mathematics or history. Breaking this mold, Secret History: The Story of Cryptology gives a thorough yet accessible treatment of both the mathematics and history of cryptology. Requiring minimal mathematical prerequisites, the
Modern cryptology increasingly employs mathematically rigorous concepts and methods from complexity theory. Conversely, current research topics in complexity theory are often motivated by questions and problems from cryptology. This book takes account of this situation, and therefore its subject is what may be dubbed "cryptocomplexity'', a kind of symbiosis of these two areas. This book is written for undergraduate and graduate students of computer science, mathematics, and engineering, and can be used for courses on complexity theory and cryptology, preferably by stressing their interrelation. Moreover, it may serve as a valuable source for researchers, teachers, and practitioners working in these fields. Starting from scratch, it works its way to the frontiers of current research in these fields and provides a detailed overview of their history and their current research topics and challenges.
Leading HP security expert Wenbo Mao explains why "textbook" crypto schemes, protocols, and systems are profoundly vulnerable by revealing real-world-scenario attacks. Next, he shows how to realize cryptographic systems and protocols that are truly "fit for application"--and formally demonstrates their fitness. Mao presents practical examples throughout and provides all the mathematical background you'll need. Coverage includes: Crypto foundations: probability, information theory, computational complexity, number theory, algebraic techniques, and more Authentication: basic techniques and principles vs. misconceptions and consequential attacks Evaluating real-world protocol standards including IPSec, IKE, SSH, TLS (SSL), and Kerberos Designing stronger counterparts to vulnerable "textbook" crypto schemes Mao introduces formal and reductionist methodologies to prove the "fit-for-application" security of practical encryption, signature, signcryption, and authentication schemes. He gives detailed explanations for zero-knowledge protocols: definition, zero-knowledge properties, equatability vs. simulatability, argument vs. proof, round-efficiency, and non-interactive versions.