Introduction to Algebraic and Constructive Quantum Field Theory

Introduction to Algebraic and Constructive Quantum Field Theory

Author: John C. Baez

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 310

ISBN-13: 1400862507

DOWNLOAD EBOOK

The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinear local functions of both free fields (or Wick products) and interacting fields are established mathematically in a way that is consistent with the basic physical constraints and practice. Among other topics discussed are functional integration, Fourier transforms in Hilbert space, and implementability of canonical transformations. The authors address readers interested in fundamental mathematical physics and who have at least the training of an entering graduate student. A series of lexicons connects the mathematical development with the underlying physical motivation or interpretation. The examples and problems illustrate the theory and relate it to the scientific literature. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Quantum Field Theory and Statistical Mechanics

Quantum Field Theory and Statistical Mechanics

Author: James Glimm

Publisher: Springer Science & Business Media

Published: 1985-01-01

Total Pages: 430

ISBN-13: 9780817632755

DOWNLOAD EBOOK

This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields.


Advances in Algebraic Quantum Field Theory

Advances in Algebraic Quantum Field Theory

Author: Romeo Brunetti

Publisher: Springer

Published: 2015-09-04

Total Pages: 460

ISBN-13: 3319213539

DOWNLOAD EBOOK

This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.


Form Factors In Completely Integrable Models Of Quantum Field Theory

Form Factors In Completely Integrable Models Of Quantum Field Theory

Author: F A Smirnov

Publisher: World Scientific

Published: 1992-08-07

Total Pages: 224

ISBN-13: 9814506907

DOWNLOAD EBOOK

The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.


Mathematics of Quantization and Quantum Fields

Mathematics of Quantization and Quantum Fields

Author: Jan DereziƄski

Publisher: Cambridge University Press

Published: 2013-03-07

Total Pages: 687

ISBN-13: 1107011116

DOWNLOAD EBOOK

A unique and definitive review of mathematical aspects of quantization and quantum field theory for graduate students and researchers.


Nonperturbative Quantum Field Theory

Nonperturbative Quantum Field Theory

Author: G. Hooft

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 603

ISBN-13: 1461307295

DOWNLOAD EBOOK

During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.


Modern Course in Quantum Field Theory

Modern Course in Quantum Field Theory

Author: Badis Ydri

Publisher: Programme: Iop Expanding Physi

Published: 2019-05-21

Total Pages: 350

ISBN-13: 9780750314817

DOWNLOAD EBOOK

A Modern Course in Quantum Field Theory provides a self-contained pedagogical and constructive presentation of quantum field theory. Written for advanced students, the work provides complete material for a two or three semester course and includes numerous problem exercises, some with detailed solutions.


Quantum Mechanics and Quantum Field Theory

Quantum Mechanics and Quantum Field Theory

Author: Jonathan Dimock

Publisher: Cambridge University Press

Published: 2011-02-03

Total Pages: 239

ISBN-13: 1139497480

DOWNLOAD EBOOK

Explaining the concepts of quantum mechanics and quantum field theory in a precise mathematical language, this textbook is an ideal introduction for graduate students in mathematics, helping to prepare them for further studies in quantum physics. The textbook covers topics that are central to quantum physics: non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics and quantum field theory. There is also background material on analysis, classical mechanics, relativity and probability. Each topic is explored through a statement of basic principles followed by simple examples. Around 100 problems throughout the textbook help readers develop their understanding.