Connections, Curvature, and Cohomology

Connections, Curvature, and Cohomology

Author: Werner Hildbert Greub

Publisher: Academic Press

Published: 1972

Total Pages: 618

ISBN-13: 0123027039

DOWNLOAD EBOOK

This monograph developed out of the Abendseminar of 1958-1959 at the University of Zürich. The purpose of this monograph is to develop the de Rham cohomology theory, and to apply it to obtain topological invariants of smooth manifolds and fibre bundles. It also addresses the purely algebraic theory of the operation of a Lie algebra in a graded differential algebra.


From Quantum Cohomology to Integrable Systems

From Quantum Cohomology to Integrable Systems

Author: Martin A. Guest

Publisher: OUP Oxford

Published: 2008-03-13

Total Pages: 336

ISBN-13: 0191606960

DOWNLOAD EBOOK

Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.


Coherent Transform, Quantization and Poisson Geometry

Coherent Transform, Quantization and Poisson Geometry

Author: Mikhail Vladimirovich Karasev

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 376

ISBN-13: 9780821811788

DOWNLOAD EBOOK

This volume copntains three extensive articles written by Karasev and his pupils. Topics covered include the following: coherent states and irreducible representations for algebras with non-Lie permutation relations, Hamilton dynamics and quantization over stable isotropic submanifolds, and infinitesimal tensor complexes over degenerate symplectic leaves in Poisson manifolds. The articles contain many examples (including from physics) and complete proofs.


Geometric Properties Of Natural Operators Defined By The Riemann Curvature Tensor

Geometric Properties Of Natural Operators Defined By The Riemann Curvature Tensor

Author: Peter B Gilkey

Publisher: World Scientific

Published: 2001-11-19

Total Pages: 316

ISBN-13: 9814490091

DOWNLOAD EBOOK

A central problem in differential geometry is to relate algebraic properties of the Riemann curvature tensor to the underlying geometry of the manifold. The full curvature tensor is in general quite difficult to deal with. This book presents results about the geometric consequences that follow if various natural operators defined in terms of the Riemann curvature tensor (the Jacobi operator, the skew-symmetric curvature operator, the Szabo operator, and higher order generalizations) are assumed to have constant eigenvalues or constant Jordan normal form in the appropriate domains of definition.The book presents algebraic preliminaries and various Schur type problems; deals with the skew-symmetric curvature operator in the real and complex settings and provides the classification of algebraic curvature tensors whose skew-symmetric curvature has constant rank 2 and constant eigenvalues; discusses the Jacobi operator and a higher order generalization and gives a unified treatment of the Osserman conjecture and related questions; and establishes the results from algebraic topology that are necessary for controlling the eigenvalue structures. An extensive bibliography is provided. Results are described in the Riemannian, Lorentzian, and higher signature settings, and many families of examples are displayed.


Quantum Field Theory

Quantum Field Theory

Author: Bertfried Fauser

Publisher: Springer Science & Business Media

Published: 2009-06-02

Total Pages: 436

ISBN-13: 376438736X

DOWNLOAD EBOOK

The present volume emerged from the 3rd `Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: To bring together outstanding experts working in the field of mathematics and physics to discuss in an open atmosphere the fundamental questions at the frontier of theoretical physics.


Loop Spaces, Characteristic Classes and Geometric Quantization

Loop Spaces, Characteristic Classes and Geometric Quantization

Author: Jean-Luc Brylinski

Publisher: Springer Science & Business Media

Published: 2009-12-30

Total Pages: 318

ISBN-13: 0817647317

DOWNLOAD EBOOK

This book examines the differential geometry of manifolds, loop spaces, line bundles and groupoids, and the relations of this geometry to mathematical physics. Applications presented in the book involve anomaly line bundles on loop spaces and anomaly functionals, central extensions of loop groups, Kähler geometry of the space of knots, and Cheeger--Chern--Simons secondary characteristics classes. It also covers the Dirac monopole and Dirac’s quantization of the electrical charge.


The Arithmetic and Geometry of Algebraic Cycles

The Arithmetic and Geometry of Algebraic Cycles

Author: B. Brent Gordon

Publisher: American Mathematical Soc.

Published: 2000-01-01

Total Pages: 468

ISBN-13: 9780821870204

DOWNLOAD EBOOK

From the June 1998 Summer School come 20 contributions that explore algebraic cycles (a subfield of algebraic geometry) from a variety of perspectives. The papers have been organized into sections on cohomological methods, Chow groups and motives, and arithmetic methods. Some specific topics include logarithmic Hodge structures and classifying spaces; Bloch's conjecture and the K-theory of projective surfaces; and torsion zero-cycles and the Abel-Jacobi map over the real numbers.