This Special Issue of International Journal of Molecular Sciences (IJMS) is dedicated to the mechanisms mediated at the molecular and cellular levels in response to adverse genomic perturbations and DNA replication stress. The relevant proteins and processes play paramount roles in nucleic acid transactions to maintain genomic stability and cellular homeostasis. A total of 18 articles are presented which encompass a broad range of highly relevant topics in genome biology. These include replication fork dynamics, DNA repair processes, DNA damage signaling and cell cycle control, cancer biology, epigenetics, cellular senescence, neurodegeneration, and aging. As Guest Editor for this IJMS
International Review of Cell and Molecular Biology, Volume 343 reviews and details current advances in cell and molecular biology. The IRCMB series has a worldwide readership, maintaining a high standard by publishing invited articles on important and timely topics that are authored by prominent cell and molecular biologists. Sections in this new release include The Molecular and Cellular Regulation of Brassicaceae Self-Incompatibility and Self-Pollen Rejection, Regulation of Plant Immunity by the Proteasome, the Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress, Glycosylation in Anticancer Immunity, Emerging Themes in PDZ Domain Signaling: Structure, Function and Inhibition, and more. - Publishes invited review articles on selected topics as authored by established and active cell and molecular biologists whose work is drawn from international sources - Offers a wide range of perspectives on specific subjects
This book summarizes all the important aspects of CRLs (Cullin-RING E3 Ubiquitin Ligases), while providing details of mechanistic specifics that go beyond protein ubiquitination and neddylation. Ubiquitin ligases, including the CRLs, which are activated by neddylation, play an important role in diverse biological processes and are involved in various human diseases, particularly cancer. The book covers various topics, such as CRL structure, biology, genetics, its regulation by neddylation, its pivotal role in human disease, and its potential in drug discovery and targeted therapies. The book appeals to biochemists and biologists working in other fields, and, given the importance of CRLs in all aspects of cell biology and the great promise of targeting these complexes for therapy, is a valuable resource anyone interested in modern biology or medicine.
This volume includes contributions by the leading experts in the field of yeast aging. Budding yeast (Saccharomyces cerevisiae) and other fungal organisms provide models for aging research that are relevant to organismic aging and to the aging processes occurring in the human body. Replicative aging, in which only the mother cell ages while the daughter cell resets the clock to zero is a model for the aging of stem cell populations in humans, while chronological aging (measured by survival in stationary phase) is a model for the aging processes in postmitotic cells (for instance, neurons of the brain). Most mechanisms of aging are studied in yeast. Among them, this book discusses: mitochondrial theories of aging, emphasizing oxidative stress and retrograde responses; the role of autophagy and mitophagy; the relationship of apoptosis to aging processes; the role of asymmetric segregation of damage in replicative aging; the role of replication stress; and the role of the cytoskeleton in aging. Modern methods of yeast genetics and genomics are described that can be used to search for aging-specific functions in a genome-wide unbiased fashion. The similarities in the pathology of senescence (studied in yeast) and of cancer cells, including genome instability, are examined.
Metabolic engineering has been developed over the past 20 years to become an important tool for rational engineering of microorganisms. This book has a particular interest in the methods and applications of metabolic engineering to improve the production and yield of a variety of metabolites in microorganisms. The overall goal is to achieve a better understanding of metabolism in different microorganisms, and provide a rational basis to reprogram microorganisms for improved biochemical production. This book brings together contributions from leading researchers at the cutting edge of these topics. The subject matter is divided into two sections. The first section deals with novel and emerging methods for redesigning microorganisms exploiting systems biology and gene regulation. The second discusses practical aspects of metabolic engineering for over production of a variety of valuable chemicals and materials by fermentation.
The discovery of vitamins in the early 1900s, their later chemical characterization and the clarification of pivotal metabolic functions are sequential aspects of a brilliant chapter in the history of modern nutritional sciences and medicine. The name, derived from “vital-amines”, indicates their elementary metabolic key functions in human metabolism. Vitamins are truly families of compounds, which include precursors and various free and bound forms, all with individual roles in metabolism and function. A more recent approach therefore searches for the components, the understanding of their roles in physiology and pathology as well as looking for novel pharmacological applications. When used properly, vitamins are, indeed, “magical” substances. Due to their efficacy, they should therefore be regarded as drugs with effects and side effects to be weighted against each other. Today, it is not the previously fatal deficiency-associated diseases that are in the focus of interest, but rather the relation of suboptimal vitamin bioavailability to chronic disease. This is complicated by genetic susceptibility, lifestyle, and the presence or absence of health-compromising habits, such as smoking. In turn, the development and application of new and more sensitive and specific assays further enable us to look more closely into the many functions of vitamins. Water soluble vitamins are complex molecular structures and even today, many areas in vitamin biochemistry are not yet fully understood. Novel effects and functions of vitamins remain and continue to be discovered. This book presents most recent research results and fascinating new knowledge on the role and effects of the water soluble vitamins in man. Some of the most distinguished chemists, biochemists, biologists and clinicians have contributed valuable chapters sharing unexpected novel insights into the biochemistry, (epi)genetics, metabolism, and function of water soluble vitamins, with their potential for clinical applications. Thus, physicians, clinicians, scientists, researchers, epidemiologists. nutritional specialists and health professionals alike will find stimulating and fascinating new insight in the many roles that water soluble vitamins play in human health and disease.
Epigenetics fine-tunes the life processes dictated by DNA sequences, but also kick-starts pathophysiological processes including diabetes, AIDS and cancer. This volume tracks the latest research on epigenetics, including work on new-generation therapeutics.
We proudly present the first book to integrate all aspects of purinergic signaling in the respiratory system. The first chapters introduce basic notions of purinergic pharmacology and metabolism, which allows readers from all scientific backgrounds to fully grasp the importance of these signaling networks for airway defenses, including mucociliary clearance and inflammatory responses. Then, chapters are devoted to the groundbreaking discovery that chronic respiratory diseases, including asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD), present specific aberrances in purinergic signaling which essentially drive lung complications. The last chapters describe the animal models used to investigate purinergic signaling in respiratory diseases, and the therapeutic applications developed by the pharmaceutical industry based on receptor agonists/antagonists and metabolic correctors. This highly comprehensive manuscript constitutes an invaluable tool for beginners and experts to follow the rapidly evolving research field of purinergic signaling. Furthermore, the critical analysis of past clinical protocols should facilitate the identification of potent therapeutic targets, and provide a better understanding of the data acquired in current clinical trials.
This book contains an extensive collection of critical reviews, from leading researchers in the field of regulated protein degradation. It covers the role of regulated proteolysis in a range of microorganisms (from Gram positive, Gram negative and pathogenic bacteria to Archaea and the Baker’s yeast Saccharomyces cerevisiae).