Conical Intersections

Conical Intersections

Author: Wolfgang Domcke

Publisher: World Scientific

Published: 2011

Total Pages: 769

ISBN-13: 9814313440

DOWNLOAD EBOOK

The concept of adiabatic electronic potential-energy surfaces, defined by the Born?Oppenheimer approximation, is fundamental to our thinking about chemical processes. Recent computational as well as experimental studies have produced ample evidence that the so-called conical intersections of electronic energy surfaces, predicted by von Neumann and Wigner in 1929, are the rule rather than the exception in polyatomic molecules. It is nowadays increasingly recognized that conical intersections play a key mechanistic role in chemical reaction dynamics. This volume provides an up-to-date overview of the multi-faceted research on the role of conical intersections in photochemistry and photobiology, including basic theoretical concepts, novel computational strategies as well as innovative experiments. The contents and discussions will be of value to advanced students and researchers in photochemistry, molecular spectroscopy and related areas.


Conical Intersections

Conical Intersections

Author: Wolfgang Domcke

Publisher: World Scientific

Published: 2004

Total Pages: 857

ISBN-13: 9812386726

DOWNLOAD EBOOK

This invaluable book presents a systematic exposition of the current state of knowledge about conical intersections, which has been elaborated in research papers scattered throughout the chemical physics literature.


Conical Intersections

Conical Intersections

Author: Wolfgang Domcke

Publisher: World Scientific

Published: 2004

Total Pages: 868

ISBN-13: 9789812565464

DOWNLOAD EBOOK

It is widely recognized nowadays that conical intersections ofmolecular potential-energy surfaces play a key mechanistic role in thespectroscopy of polyatomic molecules, photochemistry and chemicalkinetics. This invaluable book presents a systematic exposition of thecurrent state of knowledge about conical intersections, which has beenelaborated in research papers scattered throughout the chemicalphysics literature.


Conical Intersections: Theory, Computation And Experiment

Conical Intersections: Theory, Computation And Experiment

Author: Michael S Schuurman

Publisher: World Scientific

Published: 2011-11-04

Total Pages: 769

ISBN-13: 9814397938

DOWNLOAD EBOOK

The concept of adiabatic electronic potential-energy surfaces, defined by the Born-Oppenheimer approximation, is fundamental to our thinking about chemical processes. Recent computational as well as experimental studies have produced ample evidence that the so-called conical intersections of electronic energy surfaces, predicted by von Neumann and Wigner in 1929, are the rule rather than the exception in polyatomic molecules. It is nowadays increasingly recognized that conical intersections play a key mechanistic role in chemical reaction dynamics. This volume provides an up-to-date overview of the multi-faceted research on the role of conical intersections in photochemistry and photobiology, including basic theoretical concepts, novel computational strategies as well as innovative experiments. The contents and discussions will be of value to advanced students and researchers in photochemistry, molecular spectroscopy and related areas.


Beyond Born-Oppenheimer

Beyond Born-Oppenheimer

Author: Michael Baer

Publisher: John Wiley & Sons

Published: 2006-03-31

Total Pages: 254

ISBN-13: 0471780073

DOWNLOAD EBOOK

INTRODUCING A POWERFUL APPROACH TO DEVELOPING RELIABLE QUANTUM MECHANICAL TREATMENTS OF A LARGE VARIETY OF PROCESSES IN MOLECULAR SYSTEMS. The Born-Oppenheimer approximation has been fundamental to calculation in molecular spectroscopy and molecular dynamics since the early days of quantum mechanics. This is despite well-established fact that it is often not valid due to conical intersections that give rise to strong nonadiabatic effects caused by singular nonadiabatic coupling terms (NACTs). In Beyond Born-Oppenheimer, Michael Baer, a leading authority on molecular scattering theory and electronic nonadiabatic processes, addresses this deficiency and introduces a rigorous approach--diabatization--for eliminating troublesome NACTs and deriving well-converged equations to treat the interactions within and between molecules. Concentrating on both the practical and theoretical aspects of electronic nonadiabatic transitions in molecules, Professor Baer uses a simple mathematical language to rigorously eliminate the singular NACTs and enable reliable calculations of spectroscopic and dynamical cross sections. He presents models of varying complexity to illustrate the validity of the theory and explores the significance of the study of NACTs and the relationship between molecular physics and other fields in physics, particularly electrodynamics. The first book of its king Beyond Born-Oppenheimer: * Presents a detailed mathematical framework to treat electronic NACTs and their conical intersections * Describes the Born-Oppenheimer treatment, including the concepts of adiabatic and diabatic frameworks * Introduces a field-theoretical approach to calculating NACTs, which offers an alternative to time-consuming ab initio procedures * Discusses various approximations for treating a large system of diabatic Schrödinger equations * Presents numerous exercises with solutions to further clarify the material being discussed Beyond Born-Oppenheimer is required reading for physicists, physical chemists, and all researchers involved in the quantum mechanical study of molecular systems.


Conical Intersections in Physics

Conical Intersections in Physics

Author: Jonas Larson

Publisher: Springer Nature

Published: 2020-01-31

Total Pages: 168

ISBN-13: 3030348822

DOWNLOAD EBOOK

This concise book introduces and discusses the basic theory of conical intersections with applications in atomic, molecular and condensed matter physics. Conical intersections are linked to the energy of quantum systems. They can occur in any physical system characterized by both slow and fast degrees of freedom - such as e.g. the fast electrons and slow nuclei of a vibrating and rotating molecule - and are important when studying the evolution of quantum systems controlled by classical parameters. Furthermore, they play a relevant role for understanding the topological properties of condensed matter systems. Conical intersections are associated with many interesting features, such as a breakdown of the Born-Oppenheimer approximation and the appearance of nontrivial artificial gauge structures, similar to the Aharonov-Bohm effect. Some applications presented in this book include - Molecular Systems: some molecules in nonlinear nuclear configurations undergo Jahn-Teller distortions under which the molecule lower their symmetry if the electronic states belong to a degenerate irreducible representation of the molecular point group. - Solid State Physics: different types of Berry phases associated with conical intersections can be used to detect topologically nontrivial states of matter, such as topological insulators, Weyl semi-metals, as well as Majorana fermions in superconductors. - Cold Atoms: the motion of cold atoms in slowly varying inhomogeneous laser fields is governed by artificial gauge fields that arise when averaging over the fast internal degrees of freedom of the atoms. These gauge fields can be Abelian or non-Abelian, which opens up the possibility to create analogs to various relativistic effects at low speed.


Gordon Matta-Clark

Gordon Matta-Clark

Author: Bruce Jenkins

Publisher:

Published: 2011

Total Pages: 0

ISBN-13: 9781846380723

DOWNLOAD EBOOK

A landmark work byGordon Matta-Clark, examined as an ldquo;act of communicationrdquo; aboutsustainability and the public role of art.


Quantum Chemistry and Dynamics of Excited States

Quantum Chemistry and Dynamics of Excited States

Author: Leticia González

Publisher: John Wiley & Sons

Published: 2021-02-01

Total Pages: 52

ISBN-13: 1119417759

DOWNLOAD EBOOK

An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.


Multiconfigurational Quantum Chemistry

Multiconfigurational Quantum Chemistry

Author: Björn O. Roos

Publisher: John Wiley & Sons

Published: 2016-08-08

Total Pages: 240

ISBN-13: 0470633468

DOWNLOAD EBOOK

The first book to aid in the understanding of multiconfigurational quantum chemistry, Multiconfigurational Quantum Chemistry demystifies a subject that has historically been considered difficult to learn. Accessible to any reader with a background in quantum mechanics and quantum chemistry, the book contains illustrative examples showing how these methods can be used in various areas of chemistry, such as chemical reactions in ground and excited states, transition metal and other heavy element systems. The authors detail the drawbacks and limitations of DFT and coupled-cluster based methods and offer alternative, wavefunction-based methods more suitable for smaller molecules.


Excited States and Photochemistry of Organic Molecules

Excited States and Photochemistry of Organic Molecules

Author: Martin Klessinger

Publisher: VCH Publishers

Published: 1995

Total Pages: 576

ISBN-13:

DOWNLOAD EBOOK

A significantly updated translation of Lichtabsorption und Photochemie Organischer Molekule, published by VCH in 1989. A graduate textbook that provides a qualitative description of electronic excitation in organic molecules and of the associated spectroscopy, photophysics, and photochemistry. The treatment is non- mathematical and emphasizes the use of simple qualitative models for developing an intuitive feeling for the course of photophysical and photochemical processes in terms of potential energy hypersurfaces. Special attention is paid to recent developments, particularly to the role of conical intersections. Annotation copyright by Book News, Inc., Portland, OR