Semigroups, Categories, and Partial Algebras

Semigroups, Categories, and Partial Algebras

Author: P. G. Romeo

Publisher: Springer Nature

Published: 2021-03-26

Total Pages: 249

ISBN-13: 9813348429

DOWNLOAD EBOOK

This book is a collection of selected papers presented at the International Conference on Semigroups and Applications, held at the Cochin University of Science and Technology, India, from December 9–12, 2019. This book discusses the recent developments in semigroups theory, category theory and the applications of these in various areas of research, including structure theory of semigroups, lattices, rings and partial algebras. This book presents chapters on ordering orders and quotient rings, block groups and Hall’s relations, quotients of the Booleanization of inverse semigroup, Markov chains through semigroup graph expansions, polycyclic inverse monoids and Thompson group, balanced category and bundle category. This book will be of much value to researchers working in areas of semigroup and operator theory.


Lattices, Semigroups, and Universal Algebra

Lattices, Semigroups, and Universal Algebra

Author: Jorge Almeida

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 325

ISBN-13: 1489926089

DOWNLOAD EBOOK

This volume contains papers which, for the most part, are based on talks given at an international conference on Lattices, Semigroups, and Universal Algebra that was held in Lisbon, Portugal during the week of June 20-24, 1988. The conference was dedicated to the memory of Professor Antonio Almeida Costa, a Portuguese mathematician who greatly contributed to the development of th algebra in Portugal, on the 10 anniversary of his death. The themes of the conference reflect some of his research interests and those of his students. The purpose of the conference was to gather leading experts in Lattices, Semigroups, and Universal Algebra and to promote a discussion of recent developments and trends in these areas. All three fields have grown rapidly during the last few decades with varying degrees of interaction. Lattice theory and Universal Algebra have historically evolved alongside with a large overlap between the groups of researchers in the two fields. More recently, techniques and ideas of these theories have been used extensively in the theory of semigroups. Conversely, some developments in that area may inspire further developments in Universal Algebra. On the other hand, techniques of semi group theory have naturally been employed in the study of semilattices. Several papers in this volume elaborate on these interactions.