Conformal Invariance And Applications To Statistical Mechanics

Conformal Invariance And Applications To Statistical Mechanics

Author: C Itzykson

Publisher: World Scientific

Published: 1998-09-29

Total Pages: 992

ISBN-13: 9814507598

DOWNLOAD EBOOK

This volume contains Introductory Notes and major reprints on conformal field theory and its applications to 2-dimensional statistical mechanics of critical phenomena. The subject relates to many different areas in contemporary physics and mathematics, including string theory, integrable systems, representations of infinite Lie algebras and automorphic functions.


Conformal Invariance and Applications to Statistical Mechanics

Conformal Invariance and Applications to Statistical Mechanics

Author: Claude Itzykson

Publisher: World Scientific

Published: 1988

Total Pages: 1004

ISBN-13: 9789971506063

DOWNLOAD EBOOK

This volume contains Introductory Notes and major reprints on conformal field theory and its applications to 2-dimensional statistical mechanics of critical phenomena. The subject relates to many different areas in contemporary physics and mathematics, including string theory, integrable systems, representations of infinite Lie algebras and automorphic functions.


Scaling and Renormalization in Statistical Physics

Scaling and Renormalization in Statistical Physics

Author: John Cardy

Publisher: Cambridge University Press

Published: 1996-04-26

Total Pages: 264

ISBN-13: 9780521499590

DOWNLOAD EBOOK

This text provides a thoroughly modern graduate-level introduction to the theory of critical behaviour. It begins with a brief review of phase transitions in simple systems, then goes on to introduce the core ideas of the renormalisation group.


Fields, Strings and Critical Phenomena

Fields, Strings and Critical Phenomena

Author: E. Brézin

Publisher: Elsevier Science & Technology

Published: 1990

Total Pages: 678

ISBN-13:

DOWNLOAD EBOOK

Hardbound. This session of the Summer School in Theoretical Physics concentrated on the recent advances in areas of physics ranging from (super)strings to field theory and statistical mechanics. The articles contained in this volume provide a stimulating and up-to-date account of a rapidly growing subject.Discussion focussed on the many points of convergence between field theory and statistical mechanics: conformal field theory, field theory on a lattice, the study of strongly correlated electron systems, as in the Hubbard model, leading to topological Lagrangians, which are perhaps the key of the understanding of high Tc superconductivity or the fractional quantum Hall effect. The critical phenomena in (1+1) dimensions, in the domain in which quantum fluctuations are strong, are described for antiferromagnetic couplings by relativistic theories in which the methods of abelian or non-abelian bosonization are particularly powerful.


W-symmetry

W-symmetry

Author: P. Bouwknegt

Publisher: World Scientific

Published: 1995

Total Pages: 916

ISBN-13: 9789810217624

DOWNLOAD EBOOK

W-symmetry is an extension of conformal symmetry in two dimensions. Since its introduction in 1985, W-symmetry has become one of the central notions in the study of two-dimensional conformal field theory. The mathematical structures that underlie W-symmetry are so-called W-algebras, which are higher-spin extensions of the Virasoro algebra. This book contains a collection of papers on W-symmetry, covering the period from 1985 through 1993. Its main focus is the construction of W-algebras and their representation theory. A recurrent theme is the intimate connection between W-algebras and affine Lie algebras. Some of the applications, in particular W-gravity, are also covered.The significance of this reprint volume is that there are no textbooks entirely devoted to the subject.


Probability and Statistical Physics in Two and More Dimensions

Probability and Statistical Physics in Two and More Dimensions

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 481

ISBN-13: 0821868632

DOWNLOAD EBOOK

This volume is a collection of lecture notes for six of the ten courses given in Buzios, Brazil by prominent probabilists at the 2010 Clay Mathematics Institute Summer School, ``Probability and Statistical Physics in Two and More Dimensions'' and at the XIV Brazilian School of Probability. In the past ten to fifteen years, various areas of probability theory related to statistical physics, disordered systems and combinatorics have undergone intensive development. A number of these developments deal with two-dimensional random structures at their critical points, and provide new tools and ways of coping with at least some of the limitations of Conformal Field Theory that had been so successfully developed in the theoretical physics community to understand phase transitions of two-dimensional systems. Included in this selection are detailed accounts of all three foundational courses presented at the Clay school--Schramm-Loewner Evolution and other Conformally Invariant Objects, Noise Sensitivity and Percolation, Scaling Limits of Random Trees and Planar Maps--together with contributions on Fractal and Multifractal properties of SLE and Conformal Invariance of Lattice Models. Finally, the volume concludes with extended articles based on the courses on Random Polymers and Self-Avoiding Walks given at the Brazilian School of Probability during the final week of the school. Together, these notes provide a panoramic, state-of-the-art view of probability theory areas related to statistical physics, disordered systems and combinatorics. Like the lectures themselves, they are oriented towards advanced students and postdocs, but experts should also find much of interest.


Statistical Field Theory

Statistical Field Theory

Author: G. Mussardo

Publisher: Oxford University Press, USA

Published: 2010

Total Pages: 778

ISBN-13: 0199547580

DOWNLOAD EBOOK

A thorough and pedagogical introduction to phase transitions and exactly solved models in statistical physics and quantum field theory.


Quantum Field Theory Conformal Group Theory Conformal Field Theory

Quantum Field Theory Conformal Group Theory Conformal Field Theory

Author: R. Mirman

Publisher: iUniverse

Published: 2005-02

Total Pages: 313

ISBN-13: 0595336922

DOWNLOAD EBOOK

The conformal group is the invariance group of geometry (which is not understood), the largest one. Physical applications are implied, as discussed, including reasons for interactions. The group structure as well as those of related groups are analyzed. An inhomogeneous group is a subgroup of a homogeneous one because of nonlinearities of the realization. Conservation of baryons (protons can't decay) is explained and proven. Reasons for various realizations, so matrix elements, of the Lorentz group given. The clearly relevant mass level formula is compared with experimental values. Questions, implications and possibilities, including for differential equations, are raised.


Finite-Size Scaling

Finite-Size Scaling

Author: J. Cardy

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 385

ISBN-13: 0444596062

DOWNLOAD EBOOK

Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.


Classical and Quantum Statistical Physics

Classical and Quantum Statistical Physics

Author: Carlo Heissenberg

Publisher: Cambridge University Press

Published: 2022-01-20

Total Pages: 383

ISBN-13: 1108844626

DOWNLOAD EBOOK

Provides a detailed introduction to classical and quantum statistical physics, including modern applications within current research.