This monograph presents recent and new ideas arising from the study of problems of planar fluid dynamics, and which are interesting from the point of view of geometric function theory and potential theory. the book is concerned with geometric problems for Hele-Shaw flows. Additionally, Hele-Shaw flows on parameter spaces are discussed, and connections with string theory are revealed. Assumes a graduate level understanding of real and complex analysis, and fluid mechanics.
Aims at giving a presentation of ideas that arise from the problems of planar fluid dynamics and which are interesting from the point of view of geometric function theory and potential theory. This book is concerned with geometric problems for Hele-Shaw flows.
Aims at giving a presentation of ideas that arise from the problems of planar fluid dynamics and which are interesting from the point of view of geometric function theory and potential theory. This book is concerned with geometric problems for Hele-Shaw flows.
This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.
This volume contains the proceedings of the Sixth International Conference on Complex Analysis and Dynamical Systems, held from May 19–24, 2013, in Nahariya, Israel, in honor of David Shoikhet's sixtieth birthday. The papers range over a wide variety of topics in complex analysis, quasiconformal mappings, and complex dynamics. Taken together, the articles provide the reader with a panorama of activity in these areas, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis. The companion volume (Contemporary Mathematics, Volume 653) is devoted to partial differential equations, differential geometry, and radon transforms.
This volume contains state-of-art survey papers in complex analysis based on lectures given at the second Winter School on Complex Analysis and Operator Theory held in February 2008 at the University of Sevilla, Sevilla, Spain. --
This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Löwner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph. Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics.
This is a book comprising selected papers of colleagues and friends of Heinrich Begehr on the occasion of his 80th birthday. It aims at being a tribute to the excellent achievements of Heinrich Begehr in complex analysis and complex differential equations, and especially to his prominent role as one of the creators and long-time leader of the International Society for Analysis, its Applications and Computation (ISAAC).
This volume highlights the main results of the research performed within the network “Harmonic and Complex Analysis and its Applications” (HCAA), which was a five-year (2007–2012) European Science Foundation Programme intended to explore and to strengthen the bridge between two scientific communities: analysts with broad backgrounds in complex and harmonic analysis and mathematical physics, and specialists in physics and applied sciences. It coordinated actions for advancing harmonic and complex analysis and for expanding its application to challenging scientific problems. Particular topics considered by this Programme included conformal and quasiconformal mappings, potential theory, Banach spaces of analytic functions and their applications to the problems of fluid mechanics, conformal field theory, Hamiltonian and Lagrangian mechanics, and signal processing. This book is a collection of surveys written as a result of activities of the Programme and will be interesting and useful for professionals and novices in analysis and mathematical physics, as well as for graduate students. Browsing the volume, the reader will undoubtedly notice that, as the scope of the Programme is rather broad, there are many interrelations between the various contributions, which can be regarded as different facets of a common theme.
This book studies solutions of the Polubarinova–Galin and Löwner–Kufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping function is no longer locally univalent interesting phase transitions take place, leading to structural changes in the data of the solution, for example new zeros and poles in the case of rational maps. This topic intersects with several areas, including mathematical physics, potential theory and complex analysis. The text will be valuable to researchers and doctoral students interested in fluid dynamics, integrable systems, and conformal field theory.