Geometry and Topology of Configuration Spaces

Geometry and Topology of Configuration Spaces

Author: Edward R. Fadell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 314

ISBN-13: 3642564461

DOWNLOAD EBOOK

With applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology.


Ensembles on Configuration Space

Ensembles on Configuration Space

Author: Michael J. W. Hall

Publisher: Springer

Published: 2016-06-11

Total Pages: 284

ISBN-13: 3319341669

DOWNLOAD EBOOK

This book describes a promising approach to problems in the foundations of quantum mechanics, including the measurement problem. The dynamics of ensembles on configuration space is shown here to be a valuable tool for unifying the formalisms of classical and quantum mechanics, for deriving and extending the latter in various ways, and for addressing the quantum measurement problem. A description of physical systems by means of ensembles on configuration space can be introduced at a very fundamental level: the basic building blocks are a configuration space, probabilities, and Hamiltonian equations of motion for the probabilities. The formalism can describe both classical and quantum systems, and their thermodynamics, with the main difference being the choice of ensemble Hamiltonian. Furthermore, there is a natural way of introducing ensemble Hamiltonians that describe the evolution of hybrid systems; i.e., interacting systems that have distinct classical and quantum sectors, allowing for consistent descriptions of quantum systems interacting with classical measurement devices and quantum matter fields interacting gravitationally with a classical spacetime.


Equivariant Cohomology of Configuration Spaces Mod 2

Equivariant Cohomology of Configuration Spaces Mod 2

Author: Pavle V. M. Blagojević

Publisher: Springer

Published: 2021-12-02

Total Pages: 210

ISBN-13: 9783030841379

DOWNLOAD EBOOK

This book gives a brief treatment of the equivariant cohomology of the classical configuration space F(R^d,n) from its beginnings to recent developments. This subject has been studied intensively, starting with the classical papers of Artin (1925/1947) on the theory of braids, and progressing through the work of Fox and Neuwirth (1962), Fadell and Neuwirth (1962), and Arnol'd (1969). The focus of this book is on the mod 2 equivariant cohomology algebras of F(R^d,n), whose additive structure was described by Cohen (1976) and whose algebra structure was studied in an influential paper by Hung (1990). A detailed new proof of Hung's main theorem is given, however it is shown that some of the arguments given by him on the way to his result are incorrect, as are some of the intermediate results in his paper. This invalidates a paper by three of the authors, Blagojević, Lück and Ziegler (2016), who used a claimed intermediate result in order to derive lower bounds for the existence of k-regular and l-skew embeddings. Using the new proof of Hung's main theorem, new lower bounds for the existence of highly regular embeddings are obtained: Some of them agree with the previously claimed bounds, some are weaker. Assuming only a standard graduate background in algebraic topology, this book carefully guides the reader on the way into the subject. It is aimed at graduate students and researchers interested in the development of algebraic topology in its applications in geometry.


Hypergeometric Functions, My Love

Hypergeometric Functions, My Love

Author: Masaaki Yoshida

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 301

ISBN-13: 3322901661

DOWNLOAD EBOOK

The classical story - of the hypergeometric functions, the configuration space of 4 points on the projective line, elliptic curves, elliptic modular functions and the theta functions - now evolves, in this book, to the story of hypergeometric funktions in 4 variables, the configuration space of 6 points in the projective plane, K3 surfaces, theta functions in 4 variables. This modern theory has been established by the author and his collaborators in the 1990's; further development to different aspects is expected. It leads the reader to a fascinating 4-dimensional world. The author tells the story casually and visually in a plain language, starting form elementary level such as equivalence relations, the exponential function, ... Undergraduate students should be able to enjoy the text.


Modern Robotics

Modern Robotics

Author: Kevin M. Lynch

Publisher: Cambridge University Press

Published: 2017-05-25

Total Pages: 545

ISBN-13: 1107156300

DOWNLOAD EBOOK

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.


Cohomological Methods in Homotopy Theory

Cohomological Methods in Homotopy Theory

Author: Jaume Aguade

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 413

ISBN-13: 3034883129

DOWNLOAD EBOOK

This book contains a collection of articles summarizing the state of knowledge in a large portion of modern homotopy theory. A call for articles was made on the occasion of an emphasis semester organized by the Centre de Recerca Matemtica in Bellaterra (Barcelona) in 1998. The main topics treated in the book include abstract features of stable and unstable homotopy, homotopical localizations, p-compact groups, H-spaces, classifying spaces for proper actions, cohomology of discrete groups, K-theory and other generalized cohomology theories, configuration spaces, and Lusternik-Schnirelmann category. The book is addressed to all mathematicians interested in homotopy theory and in geometric aspects of group theory. New research directions in topology are highlighted. Moreover, this informative and educational book serves as a welcome reference for many new results and recent methods.


Combinatorial And Toric Homotopy: Introductory Lectures

Combinatorial And Toric Homotopy: Introductory Lectures

Author: Alastair Darby

Publisher: World Scientific

Published: 2017-10-20

Total Pages: 448

ISBN-13: 9813226587

DOWNLOAD EBOOK

This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning.The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis-Januszkiewicz spaces, moment-angle complexes and their generalizations to polyhedral products. The book also displays the current research on configuration spaces, braids, the theory of limits over the category of presentations and the theory of fr-codes. As an application to robotics, the book surveys topological problems relevant to the motion planning problem of robotics and includes new results and constructions, which enrich the emerging area of topological robotics.The book is at research entry level addressing the core components in homotopy theory and their important applications in the sciences and thus suitable for advanced undergraduate and graduate students.


Compactifications, Configurations, and Cohomology

Compactifications, Configurations, and Cohomology

Author: Peter Crooks

Publisher: American Mathematical Society

Published: 2023-09-25

Total Pages: 168

ISBN-13: 1470469928

DOWNLOAD EBOOK

This volume contains the proceedings of the Conference on Compactifications, Configurations, and Cohomology, held from October 22–24, 2021, at Northeastern University, Boston, MA. Some of the most active and fruitful mathematical research occurs at the interface of algebraic geometry, representation theory, and topology. Noteworthy examples include the study of compactifications in three specific settings—algebraic group actions, configuration spaces, and hyperplane arrangements. These three types of compactifications enjoy common structural features, including relations to root systems, combinatorial descriptions of cohomology rings, the appearance of iterated blow-ups, the geometry of normal crossing divisors, and connections to mirror symmetry in physics. On the other hand, these compactifications are often studied independently of one another. The articles focus on new and existing connections between the aforementioned three types of compactifications, thereby setting the stage for further research. It draws on the discipline-specific expertise of all contributors, and at the same time gives a unified, self-contained reference for compactifications and related constructions in different contexts.


Braids and Coverings

Braids and Coverings

Author: Vagn Lundsgaard Hansen

Publisher: Cambridge University Press

Published: 1989-12-07

Total Pages: 208

ISBN-13: 9780521387576

DOWNLOAD EBOOK

Essays develop the elementary theory of Artin Braid groups geometrically and via homotopy theory, discuss the link between knot theory and the combinatorics of braid groups through Markou's Theorem and investigate polynomial covering maps.


Variational Calculus

Variational Calculus

Author: Jean-Pierre Bourguignon

Publisher: Springer Nature

Published: 2022-12-14

Total Pages: 284

ISBN-13: 303118307X

DOWNLOAD EBOOK

This book provides a comprehensive introduction to the Calculus of Variations and its use in modelling mechanics and physics problems. Presenting a geometric approach to the subject, it progressively guides the reader through this very active branch of mathematics, accompanying key statements with a huge variety of exercises, some of them solved. Stressing the need to overcome limitations of the initial point of view, and emphasising the interconnectivity of various branches of mathematics (algebra, analysis and geometry), the book includes some advanced material to challenge the most motivated students. Systematic, short historical notes provide details on the subject’s odyssey, and how new tools have been developed over the last two centuries. This English translation updates a set of notes for a course first given at the École polytechnique in 1987. It will be accessible to graduate students and advanced undergraduates.