Brief, clear, and well written, this introductory treatment bridges the gap between traditional and modern algebra. Includes exercises with complete solutions. The only prerequisite is high school-level algebra. 1959 edition.
A Concrete Approach to Abstract Algebra presents a solid and highly accessible introduction to abstract algebra by providing details on the building blocks of abstract algebra.It begins with a concrete and thorough examination of familiar objects such as integers, rational numbers, real numbers, complex numbers, complex conjugation, and polynomials. The author then builds upon these familiar objects and uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students. Exercises provide a balanced blend of difficulty levels, while the quantity allows the instructor a latitude of choices. The final four chapters present the more theoretical material needed for graduate study.This text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics which arise in courses in algebra, geometry, trigonometry, precalculus, and calculus. Presents a more natural 'rings first' approach to effectively leading the student into the the abstract material of the course by the use of motivating concepts from previous math courses to guide the discussion of abstract algebra Bridges the gap for students by showing how most of the concepts within an abstract algebra course are actually tools used to solve difficult, but well-known problems Builds on relatively familiar material (Integers, polynomials) and moves onto more abstract topics, while providing a historical approach of introducing groups first as automorphisms Exercises provide a balanced blend of difficulty levels, while the quantity allows the instructor a latitude of choices
Relations between groups and sets, results and methods of abstract algebra in terms of number theory and geometry, and noncommutative and homological algebra. Solutions. 2006 edition.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
A Concrete Approach to Abstract Algebra begins with a concrete and thorough examination of familiar objects like integers, rational numbers, real numbers, complex numbers, complex conjugation and polynomials, in this unique approach, the author builds upon these familar objects and then uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students. The text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics wich arise in courses in algebra, geometry, trigonometry, precalculus and calculus. The final four chapters present the more theoretical material needed for graduate study.
Lucid coverage of the major theories of abstract algebra, with helpful illustrations and exercises included throughout. Unabridged, corrected republication of the work originally published 1971. Bibliography. Index. Includes 24 tables and figures.
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.
Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.