Modeling Uncertainty in the Earth Sciences highlights the various issues, techniques and practical modeling tools available for modeling the uncertainty of complex Earth systems and the impact that it has on practical situations. The aim of the book is to provide an introductory overview which covers a broad range of tried-and-tested tools. Descriptions of concepts, philosophies, challenges, methodologies and workflows give the reader an understanding of the best way to make decisions under uncertainty for Earth Science problems. The book covers key issues such as: Spatial and time aspect; large complexity and dimensionality; computation power; costs of 'engineering' the Earth; uncertainty in the modeling and decision process. Focusing on reliable and practical methods this book provides an invaluable primer for the complex area of decision making with uncertainty in the Earth Sciences.
Scientists have long sought to unravel the fundamental mysteries of the land, life, water, and air that surround us. But as the consequences of humanity's impact on the planet become increasingly evident, governments are realizing the critical importance of understanding these environmental systemsâ€"and investing billions of dollars in research to do so. To identify high-priority environmental science projects, Grand Challenges in Environmental Sciences explores the most important areas of research for the next generation. The book's goal is not to list the world's biggest environmental problems. Rather it is to determine areas of opportunity thatâ€"with a concerted investmentâ€"could yield significant new findings. Nominations for environmental science's "grand" challenges were solicited from thousands of scientists worldwide. Based on their responses, eight major areas of focus were identifiedâ€"areas that offer the potential for a major scientific breakthrough of practical importance to humankind, and that are feasible if given major new funding. The book further pinpoints four areas for immediate action and investment.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
Edited by two experts in the area, Geoethics: Ethical Challenges and Case Studies in Earth Sciences addresses a range of topics surrounding the concept of ethics in geoscience, making it an important reference for any Earth scientist with a growing concern for sustainable development and social responsibility. This book will provide the reader with some obvious and some hidden information you need for understanding where experts have not served the public, what more could have been done to reach and serve the public and the ethical issues surrounding the Earth Sciences, from a global perspective. Written by a global group of contributors with backgrounds ranging from philosopher to geo-practitioner, providing a balance of voices Includes case studies, showing where experts have gone wrong and where key organizations have ignored facts, wanting assessments favorable to their agendas Provides a much needed basis for discussion to guide scientists to consider their responsibilities and to improve communication with the public
Basic Research Opportunities in Earth Science identifies areas of high-priority research within the purview of the Earth Science Division of the National Science Foundation, assesses cross-disciplinary connections, and discusses the linkages between basic research and societal needs. Opportunities in Earth science have been opened up by major improvements in techniques for reading the geological record of terrestrial change, capabilities for observing active processes in the present-day Earth, and computational technologies for realistic simulations of dynamic geosystems. This book examines six specific areas in which the opportunities for basic research are especially compelling, including integrative studies of the near-surface environment (the "Critical Zone"); geobiology; Earth and planetary materials; investigations of the continents; studies of Earth's deep interior; and planetary science. It concludes with a discussion of mechanisms for exploiting these research opportunities, including EarthScope, natural laboratories, and partnerships.
The Earth system functions and connects in unexpected ways - from the microscopic interactions of bacteria and rocks to the macro-scale processes that build and erode mountains and regulate Earth's climate. Efforts to study Earth's intertwined processes are made even more pertinent and urgent by the need to understand how the Earth can continue to sustain both civilization and the planet's biodiversity. A Vision for NSF Earth Sciences 2020-2030: Earth in Time provides recommendations to help the National Science Foundation plan and support the next decade of Earth science research, focusing on research priorities, infrastructure and facilities, and partnerships. This report presents a compelling and vibrant vision of the future of Earth science research.
During geologic spans of time, Earth's shifting tectonic plates, atmosphere, freezing water, thawing ice, flowing rivers, and evolving life have shaped Earth's surface features. The resulting hills, mountains, valleys, and plains shelter ecosystems that interact with all life and provide a record of Earth surface processes that extend back through Earth's history. Despite rapidly growing scientific knowledge of Earth surface interactions, and the increasing availability of new monitoring technologies, there is still little understanding of how these processes generate and degrade landscapes. Landscapes on the Edge identifies nine grand challenges in this emerging field of study and proposes four high-priority research initiatives. The book poses questions about how our planet's past can tell us about its future, how landscapes record climate and tectonics, and how Earth surface science can contribute to developing a sustainable living surface for future generations.
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.