Computer Vision In Medical Imaging

Computer Vision In Medical Imaging

Author: Chi Hau Chen

Publisher: World Scientific

Published: 2013-11-18

Total Pages: 410

ISBN-13: 9814460958

DOWNLOAD EBOOK

The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.


Medical Computer Vision

Medical Computer Vision

Author: Bjoern Menze

Publisher: Springer

Published: 2011-02-02

Total Pages: 235

ISBN-13: 3642184219

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Medical Computer Vision, MCV 2010, held in Beijing, China, in September 2010 as a satellite event of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2010. The 10 revised full papers and 11 revised poster papers presented were carefully reviewed and selected from 38 initial submissions. The papers explore the use of modern image recognition technology in tasks such as semantic anatomy parsing, automatic segmentation and quantification, anomaly detection and categorization, data harvesting, semantic navigation and visualization, data organization and clustering, and general-purpose automatic understanding of medical images.


Advanced Machine Vision Paradigms for Medical Image Analysis

Advanced Machine Vision Paradigms for Medical Image Analysis

Author: Tapan K. Gandhi

Publisher: Academic Press

Published: 2020-08-11

Total Pages: 310

ISBN-13: 0128192968

DOWNLOAD EBOOK

Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs. - Explores major emerging trends in technology which are supporting the current advancement of medical image analysis with the help of computational intelligence - Highlights the advancement of conventional approaches in the field of medical image processing - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques, as well as their applications in medical image analysis


Machine Learning and Medical Imaging

Machine Learning and Medical Imaging

Author: Guorong Wu

Publisher: Academic Press

Published: 2016-08-11

Total Pages: 514

ISBN-13: 0128041145

DOWNLOAD EBOOK

Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques


Medical Imaging

Medical Imaging

Author: K.C. Santosh

Publisher: CRC Press

Published: 2019-08-20

Total Pages: 251

ISBN-13: 0429642490

DOWNLOAD EBOOK

Winner of the "Outstanding Academic Title" recognition by Choice for the 2020 OAT Awards. The Choice OAT Award represents the highest caliber of scholarly titles that have been reviewed by Choice and conveys the extraordinary recognition of the academic community. The book discusses varied topics pertaining to advanced or up-to-date techniques in medical imaging using artificial intelligence (AI), image recognition (IR) and machine learning (ML) algorithms/techniques. Further, coverage includes analysis of chest radiographs (chest x-rays) via stacked generalization models, TB type detection using slice separation approach, brain tumor image segmentation via deep learning, mammogram mass separation, epileptic seizures, breast ultrasound images, knee joint x-ray images, bone fracture detection and labeling, and diabetic retinopathy. It also reviews 3D imaging in biomedical applications and pathological medical imaging.


Guide to Medical Image Analysis

Guide to Medical Image Analysis

Author: Klaus D. Toennies

Publisher: Springer Science & Business Media

Published: 2012-02-04

Total Pages: 477

ISBN-13: 144712751X

DOWNLOAD EBOOK

This book presents a comprehensive overview of medical image analysis. Practical in approach, the text is uniquely structured by potential applications. Features: presents learning objectives, exercises and concluding remarks in each chapter, in addition to a glossary of abbreviations; describes a range of common imaging techniques, reconstruction techniques and image artefacts; discusses the archival and transfer of images, including the HL7 and DICOM standards; presents a selection of techniques for the enhancement of contrast and edges, for noise reduction and for edge-preserving smoothing; examines various feature detection and segmentation techniques, together with methods for computing a registration or normalisation transformation; explores object detection, as well as classification based on segment attributes such as shape and appearance; reviews the validation of an analysis method; includes appendices on Markov random field optimization, variational calculus and principal component analysis.


Patch-Based Techniques in Medical Imaging

Patch-Based Techniques in Medical Imaging

Author: Guorong Wu

Publisher: Springer

Published: 2016-01-07

Total Pages: 225

ISBN-13: 3319281941

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-workshop proceedings of the First International Workshop on Patch-based Techniques in Medical Images, Patch-MI 2015, which was held in conjunction with MICCAI 2015, in Munich, Germany, in October 2015. The 25 full papers presented in this volume were carefully reviewed and selected from 35 submissions. The topics covered are such as image segmentation of anatomical structures or lesions; image enhancement; computer-aided prognostic and diagnostic; multi-modality fusion; mono and multi modal image synthesis; image retrieval; dynamic, functional physiologic and anatomic imaging; super-pixel/voxel in medical image analysis; sparse dictionary learning and sparse coding; analysis of 2D, 2D+t, 3D, 3D+t, 4D, and 4D+t data.


Computer Vision for Biomedical Image Applications

Computer Vision for Biomedical Image Applications

Author: Yanxi Liu

Publisher: Springer Science & Business Media

Published: 2005-10-10

Total Pages: 577

ISBN-13: 3540294112

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20.


Deep Learning and Convolutional Neural Networks for Medical Image Computing

Deep Learning and Convolutional Neural Networks for Medical Image Computing

Author: Le Lu

Publisher: Springer

Published: 2017-07-12

Total Pages: 327

ISBN-13: 331942999X

DOWNLOAD EBOOK

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.


Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis

Author: S. Kevin Zhou

Publisher: Academic Press

Published: 2023-11-23

Total Pages: 544

ISBN-13: 0323858880

DOWNLOAD EBOOK

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache