This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter.
This thesis presents an in-depth study on the effect of colloidal particle shape and formation mechanism on self-organization and the final crystal symmetries that can be achieved. It demonstrates how state-of-the-art X-ray diffraction techniques can be used to produce detailed characterizations of colloidal crystal structures prepared using different self-assembly techniques, and how smart systems can be used to investigate defect formation and diffusion in-situ. One of the most remarkable phenomena exhibited by concentrated suspensions of colloidal particles is the spontaneous self-organization into structures with long-range spatial and/or orientational orders. The study also reveals the subtle structural variations that arise by changing the particle shape from spherical to that of a rounded cube. In particular, the roundness of the cube corners, when combined with the self-organization pathway, convective assembly or sedimentation, was shown to influence the final crystal symmetries.
Topological defects are the subject of intensive studies in many different branches of physics ranging from cosmology to liquid crystals and from elementary particles to colloids and biological systems. Liquid crystals are fascinating materials which present a great variety of these mathematical objects and can therefore be considered as an extremely useful laboratory for topological defects. This book is the first attempt to present together complementary approaches to the investigations of topological defects in liquid crystals using theory, experiments and computer simulations.
This volume presents computer simulation methods and mathematical modelling of physical processes used in surface science research. It offers in-depth analysis of advanced theoretical approaches to behaviours of fluids in contact with porous, semiporous and nonporous solid surfaces. The book also explores interfacial systems for a wide variety of p
This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging "classical" and "nano" concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played a crucial role in setting up the theoretical fundamentals of nucleation and crystal growth phenomena in the last century.
The 11th Conference of the European Colloid and Interface Society (ECIS) was held in September 1997 in Lunteren, The Netherlands. The scientific program covered theoretical, experimental, and technical aspects of modern colloid and interface science. This volume contains a selection of contributions in the following fields: New topics in colloid science Polymer colloids Rheology Surfactant colloids Polymers and surfactants at interfaces
One of the most important aspects of solid materials is the regularity of the arrangement of the constituent molecules, that is, the long-range order. The focus of this book is on the contribution made by the ordering of bond orientations (as distinguished from the orientations of the molecules themselves) on the behavior of condensed systems, particularly their phase transitions. Examples in which bond-orientational effects play an important role are liquid crystals, quasicrystals, and two-dimensional crystals. This book contains contributions by many of the foremost researchers in the field. The chapters are tutorial reviews of the subject, written both for the active researcher looking for a review of a topic and for the graduate student investigating an exciting area of research. The contributions include an overview by J.D. Brock, Cornell; a discussion of computer simulation studies by K.J. Strandburg, Argonne; chapters on phase transition in hexatic liquid crystals by C.C. Huang, Minnesota and C.A. Murray, Texas A&M; and chapters on quasicrystals by S. Sachdev, Yale, M.V. Jaric, A.I. Goldman, Iowa State, and T.-L. Ho, Ohio State.
Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.