An introductory level text for high school students, this book elucidates the step-by-step procedures used to solve problems and demonstrates the simplicity with which one can read and write computer programmes using BASIC language. It explains how a computer works, using an elementary model of the computer. All programmes are worked out on the IBM PC and involve a minimum of mathematics. This new edition is thoroughly revised and updated to incorporate recent developments in the field. It also contains a large number of worked-out examples and exercises with solutions to assist self-study. It can be used by all interested beginners and laymen as well.
Simon introduces the broad range of applications for embedded software and then reviews each major issue facing developers, offering practical solutions, techniques, and good habits that apply no matter which processor, real-time operating systems, methodology, or application is used.
This new book by Ken Steigliz offers an informal and easy-to-understand introduction to digital signal processing, emphasizing digital audio and applications to computer music. A DSP Primer covers important topics such as phasors and tuning forks; the wave equation; sampling and quantizing; feedforward and feedback filters; comb and string filters; periodic sounds; transform methods; and filter design. Steiglitz uses an intuitive and qualitative approach to develop the mathematics critical to understanding DSP. A DSP Primer is written for a broad audience including: Students of DSP in Engineering and Computer Science courses. Composers of computer music and those who work with digital sound. WWW and Internet developers who work with multimedia. General readers interested in science that want an introduction to DSP. Features: Offers a simple and uncluttered step-by-step approach to DSP for first-time users, especially beginners in computer music. Designed to provide a working knowledge and understanding of frequency domain methods, including FFT and digital filtering. Contains thought-provoking questions and suggested experiments that help the reader to understand and apply DSP theory and techniques.
The authors present a fresh, pragmatic approach to the study of software architecture. This edition contains a series of chapters that introduce and develop an understanding of software architecture by means of careful explanation and elaboration of a range of key concepts. (Computer Books)
This textbook provides an engaging and motivational introduction to traditional topics in discrete mathematics, in a manner specifically designed to appeal to computer science students. The text empowers students to think critically, to be effective problem solvers, to integrate theory and practice, and to recognize the importance of abstraction. Clearly structured and interactive in nature, the book presents detailed walkthroughs of several algorithms, stimulating a conversation with the reader through informal commentary and provocative questions. Features: no university-level background in mathematics required; ideally structured for classroom-use and self-study, with modular chapters following ACM curriculum recommendations; describes mathematical processes in an algorithmic manner; contains examples and exercises throughout the text, and highlights the most important concepts in each section; selects examples that demonstrate a practical use for the concept in question.
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
The success of the Internet of Things and rich cloud services have helped create the need for edge computing, in which data processing occurs in part at the network edge, rather than completely in the cloud. In Edge Computing: A Primer the vision and definition of Edge computing is introduced, as well as several key techniques that enable Edge computing. Then, four applications that benefit from Edge computing are presented as case studies, ranging from smart homes and public safety to medical services, followed by a discussion of several open challenges and opportunities in Edge computing. Finally, several key tools for edge computing such as virtualization and resource management are explained.
Explains how computers are used in the production of animated films and discusses techniques for programming personal computers to create graphics and animation