Computer Modeling of Gas Lasers
Author: Kenneth Smith
Publisher: Springer Science & Business Media
Published: 2013-06-29
Total Pages: 427
ISBN-13: 1475706413
DOWNLOAD EBOOKRead and Download eBook Full
Author: Kenneth Smith
Publisher: Springer Science & Business Media
Published: 2013-06-29
Total Pages: 427
ISBN-13: 1475706413
DOWNLOAD EBOOKAuthor: Mark Steven Csele
Publisher: CRC Press
Published: 2017-12-19
Total Pages: 274
ISBN-13: 1466582510
DOWNLOAD EBOOKOffering a fresh take on laser engineering, Laser Modeling: A Numerical Approach with Algebra and Calculus presents algebraic models and traditional calculus-based methods in tandem to make concepts easier to digest and apply in the real world. Each technique is introduced alongside a practical, solved example based on a commercial laser. Assuming some knowledge of the nature of light, emission of radiation, and basic atomic physics, the text: Explains how to formulate an accurate gain threshold equation as well as determine small-signal gain Discusses gain saturation and introduces a novel pass-by-pass model for rapid implementation of "what if?" scenarios Outlines the calculus-based Rigrod approach in a simplified manner to aid in comprehension Considers thermal effects on solid-state lasers and other lasers with new and efficient quasi-three-level materials Demonstrates how the convolution method is used to predict the effect of temperature drift on a DPSS system Describes the technique and technology of Q-switching and provides a simple model for predicting output power Addresses non-linear optics and supplies a simple model for calculating optimal crystal length Examines common laser systems, answering basic design questions and summarizing parameters Includes downloadable Microsoft® ExcelTM spreadsheets, allowing models to be customized for specific lasers Don’t let the mathematical rigor of solutions get in the way of understanding the concepts. Laser Modeling: A Numerical Approach with Algebra and Calculus covers laser theory in an accessible way that can be applied immediately, and numerically, to real laser systems.
Author: Gennadiĭ Andreevich Mesi︠a︡t︠s︡
Publisher: SPIE Press
Published: 1995
Total Pages: 392
ISBN-13: 9780819417091
DOWNLOAD EBOOKAuthor: E. W. McDaniel
Publisher: Academic Press
Published: 2013-10-22
Total Pages: 486
ISBN-13: 1483218686
DOWNLOAD EBOOKApplied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers. Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic operating principles of major gas laser types. The discussion then turns to the mechanism of formation of negative ions in gas lasers; ion-ion recombination in high-pressure plasmas; electron-ion recombination in gas lasers; and collision processes in chemical lasers. Subsequent chapters focus on high-energy carbon dioxide laser amplifiers; spectroscopy and excited state chemistry of excimer lasers; rare-gas halide lasers; transient optical absorption in the ultraviolet; and pre-ionized self-sustained laser discharges. The final chapter considers the stability of excimer laser discharges. This book will be of interest to physicists and chemists.
Author: Masamori Endo
Publisher: CRC Press
Published: 2018-10-03
Total Pages: 576
ISBN-13: 1420018809
DOWNLOAD EBOOKLasers with a gaseous active medium offer high flexibility, wide tunability, and advantages in cost, beam quality, and power scalability. Gas lasers have tended to become overshadowed by the recent popularity and proliferation of semiconductor lasers. As a result of this shift in focus, details on modern developments in gas lasers are difficult to find. In addition, different types of gas lasers have unique properties that are not well-described in other references. Collecting expert contributions from authorities dealing with specific types of lasers, Gas Lasers examines the fundamentals, current research, and applications of this important class of laser. It is important to understand all types of lasers, from solid-state to gaseous, before making a decision for any application. This book fills in the gaps by discussing the definition and properties of gaseous media along with its fluid dynamics, electric excitation circuits, and optical resonators. From this foundation, the discussion launches into the basic physics, characteristics, applications, and current research efforts for specific types of gas lasers: CO lasers, CO2 lasers, HF/DF lasers, excimer lasers, iodine lasers, and metal vapor lasers. The final chapter discusses miscellaneous lasers not covered in the previous chapters. Collecting hard-to-find material into a single, convenient source, Gas Lasers offers an encyclopedic survey that helps you approach new applications with a more complete inventory of laser options.
Author:
Publisher:
Published: 1993
Total Pages: 754
ISBN-13:
DOWNLOAD EBOOKAuthor: United States. Energy Research and Development Administration
Publisher:
Published: 1977
Total Pages: 852
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1975
Total Pages: 1004
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1998
Total Pages: 868
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher: National Academies
Published: 1990
Total Pages: 164
ISBN-13:
DOWNLOAD EBOOK