This book is also available through the Introductory Engineering Custom Publishing System. If you are interested in creating a course-pack that includes chapters from this book, you can get further information by calling 212-850-6272 or sending email inquiries to engineer jwiley.com. Uses an engineering perspective to computer graphics. Covers geometric modeling principles to promote the mastery of both theory and application of computer graphics. Features outstanding coverage of curves and surfaces and data structures. Contains flow charts, CAD database descriptions and engineering application problems to facilitate understanding. Numerous photographs illustrate engineering-oriented computer graphics.
"Curves and Surfaces in Geometric Modeling: Theory and Algorithms offers a theoretically unifying understanding of polynomial curves and surfaces as well as an effective approach to implementation that you can apply to your own work as a graduate student, scientist, or practitioner." "The focus here is on blossoming - the process of converting a polynomial to its polar form - as a natural, purely geometric explanation of the behavior of curves and surfaces. This insight is important for more than just its theoretical elegance - the author demonstrates the value of blossoming as a practical algorithmic tool for generating and manipulating curves and surfaces that meet many different criteria. You'll learn to use this and other related techniques drawn from affine geometry for computing and adjusting control points, deriving the continuity conditions for splines, creating subdivision surfaces, and more." "It will be an essential acquisition for readers in many different areas, including computer graphics and animation, robotics, virtual reality, geometric modeling and design, medical imaging, computer vision, and motion planning."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved
A book for those interested in how modern graphics programs work and how they can generate realistic-looking objects. It emphasises the mathematics behind computer graphics, most of which is included in an appendix. The main topics covered are: scan conversion methods; selecting the best pixels for generating lines, circles and other objects; geometric transformations and projections; translations, rotations, moving in 3D, perspective projections, curves and surfaces; construction, wire-frames, rendering, normals; CRTs, antialiasing, animation, colour, perception, polygons, compression. With its numerous illustrative examples and exercises, the book is ideal for a two-semester course for advanced undergraduates or graduates, while also making a fine reference for professionals in the field.
Computer Aided Geometric Design covers the proceedings of the First International Conference on Computer Aided Geometric Design, held at the University of Utah on March 18-21, 1974. This book is composed of 15 chapters and starts with reviews of the properties of surface patch equation and the use of computers in geometrical design. The next chapters deal with the principles of smooth interpolation over triangles and without twist constraints, as well as the graphical representation of surfaces over triangles and rectangles. These topics are followed by discussions of the B-spline curves and surfaces; mathematical and practical possibilities of UNISURF; nonlinear splines; and some piecewise polynomial alternatives to splines under tension. Other chapters explore the smooth parametric surfaces, the space curve as a folded edge, and the interactive computer graphics application of the parametric bi-cubic surface to engineering design problems. The final chapters look into the three-dimensional human-machine communication and a class of local interpolating splines. This book will prove useful to design engineers.
Do you spend too much time creating the building blocks of your graphics applications or finding and correcting errors? Geometric Tools for Computer Graphics is an extensive, conveniently organized collection of proven solutions to fundamental problems that you'd rather not solve over and over again, including building primitives, distance calculation, approximation, containment, decomposition, intersection determination, separation, and more. If you have a mathematics degree, this book will save you time and trouble. If you don't, it will help you achieve things you may feel are out of your reach. Inside, each problem is clearly stated and diagrammed, and the fully detailed solutions are presented in easy-to-understand pseudocode. You also get the mathematics and geometry background needed to make optimal use of the solutions, as well as an abundance of reference material contained in a series of appendices. Features - Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors. - Covers problems relevant for both 2D and 3D graphics programming. - Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you. - Provides the math and geometry background you need to understand the solutions and put them to work. - Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode. - Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.* Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors.* Covers problems relevant for both 2D and 3D graphics programming.* Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you.* Provides the math and geometry background you need to understand the solutions and put them to work.* Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode.* Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.
Possibly the most comprehensive overview of computer graphics as seen in the context of geometric modeling, this two-volume work covers implementation and theory in a thorough and systematic fashion. It covers the computer graphics part of the field of geometric modeling and includes all the standard computer graphics topics. The CD-ROM features two companion programs.
A new discipline is said to attain maturity when the subject matter takes the shape of a textbook. Several textbooks later, the discipline tends to acquire a firm place in the curriculum for teaching and learning. Computer Aided Engineering Design (CAED), barely three decades old, is interdisciplinary in nature whose boundaries are still expanding. However, it draws its core strength from several acknowledged and diverse areas such as computer graphics, differential geometry, Boolean algebra, computational geometry, topological spaces, numerical analysis, mechanics of solids, engineering design and a few others. CAED also needs to show its strong linkages with Computer Aided Manufacturing (CAM). As is true with any growing discipline, the literature is widespread in research journals, edited books, and conference proceedings. Various textbooks have appeared with different biases, like geometric modeling, computer graphics, and CAD/CAM over the last decade. This book goes into mathematical foundations and the core subjects of CAED without allowing itself to be overshadowed by computer graphics. It is written in a logical and thorough manner for use mainly by senior and graduate level students as well as users and developers of CAD software. The book covers (a) The fundamental concepts of geometric modeling so that a real understanding of designing synthetic surfaces and solid modeling can be achieved. (b) A wide spectrum of CAED topics such as CAD of linkages and machine elements, finite element analysis, optimization. (c) Application of these methods to real world problems.