Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals
Author: Larry Kaufman
Publisher:
Published: 1970
Total Pages: 362
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Larry Kaufman
Publisher:
Published: 1970
Total Pages: 362
ISBN-13:
DOWNLOAD EBOOKAuthor: Allen Alper
Publisher: Elsevier
Published: 2012-12-02
Total Pages: 328
ISBN-13: 0323155758
DOWNLOAD EBOOKRefractory Materials: A Series of Monographs Volume IV is a collection of works from different scientists who have made important discoveries in fields related to chemistry. The text covers topics such as chemical vapor deposition – its general aspects, selection of reactions, and parameters; solid-gas phase diagrams and open-tube processes; and the experimental resolution of solid-vapor equilibria. Also covered are topics such as phase behavior and related properties of rare-earth borides, crystal chemistry, the use of phase diagrams in the research and development of phosphor materials, and phase equilibria in magnetic oxide materials. The book is recommended for chemists and materials scientists who would like to know more about the studies of other experts in the field and their applications.
Author: Allen Alper
Publisher: Elsevier
Published: 2012-12-02
Total Pages: 348
ISBN-13: 0323154891
DOWNLOAD EBOOKPhase Diagrams: Materials Science and Technology, Volume V is a six-chapter text that covers the use of phase diagrams in the understanding and development of inorganic materials. This volume first examines the atomistic understanding of the geometry of phase diagrams and the thermodynamic parameters on which the diagrams are based, as well as the relations of diagrams to crystal chemistry. The topics are followed by discussions on the most important thermodynamic theories of nonstoichiometry in binary oxide systems and the theories of spinodal decomposition that are relevant to crystalline nonmetals, especially to mixed crystalline oxides. Other chapters explore the phase equilibrium relations of phosphatic apatites including fluor-, chlor-, and hydroxyanion-containing compounds and of sialons and other nitrogen ceramics. The last chapter describes the mechanical, chemical, and thermal shock-resistant properties required of materials for stringent application. This chapter highlights the maximizing of the thermal shock resistance of silicate ceramics through lowering thermal expansion to meet the required properties of this application. The use of phase diagrams in the development of low thermal expansion materials for these applications is also discussed. This book will be useful to all scientists, engineers, and materials science students who are investigating and developing materials, as well as to the end user of the materials.
Author: Allen Alper
Publisher: Elsevier
Published: 2012-12-02
Total Pages: 344
ISBN-13: 0323155073
DOWNLOAD EBOOKPhase Diagrams: Materials Science and Technology, Volume III is an eight-chapter text that deals with the use of phase diagrams in electronic materials and glass technology. This volume first describes several crystal-growth techniques and the use of phase diagrams in crystals grown from high-temperature systems. This is followed by discussions on phase problems encountered in semiconductor studies with compound semiconductors and the use of phase diagrams in illustrating superconducting state and superconductivity property of materials. A chapter deals with the preparation of metastable phases by rapid quenching from the liquid (splat cooling) and the alloy constitution changes associated with their formation and properties, with a particular emphasis on the phase-diagram representation of metastable alloy phases. The discussion then shifts to metastable liquid immiscibility, occurrence, techniques of study, mechanisms of microphase separation, phase diagrams, and practical applications. This volume also examines the use of phase diagrams to obtain solubility data for high-temperature systems assisting in the prediction of dissolution behavior. The concluding chapters explore the relationships between phase diagrams and the structure of glass-forming oxide and phase studies of molten salts and their interactions with other salts and oxides. This book will be useful to all scientists, engineers, and materials science students who are investigating and developing materials, as well as to the end users of the materials.
Author: Allen Alper
Publisher: Elsevier
Published: 2012-12-02
Total Pages: 375
ISBN-13: 0323153607
DOWNLOAD EBOOKPhase Diagrams: Materials Science and Technology, Volume II covers the use of phase diagrams in metals, refractories, ceramics, and cements. Divided into 10 chapters, this volume first describes the main features of phase diagrams representing systems in which the oxygen pressure is an important parameter, starting with binary systems and proceeding toward the more complicated ternary and quaternary systems. The subsequent chapters discuss the application of phase diagrams in several refractory systems. A chapter covers the procedures used for cement production and some of the available phase-equilibrium data and their application to specific situations. This volume also deals with the application of phase diagrams to extraction metallurgy, with an emphasis on oxide systems, as well as in ceramic and metal sintering. The concluding chapters explore the relationship of heat treatment of metals and alloys to their phase diagrams. These chapters also deal with the use of phase diagrams in several techniques of joining metals, such as fusion welding, brazing, solid-state bonding, and soldering. This volume will be useful to all scientists, engineers, and materials science students who are investigating and developing materials, as well as to the end users of the materials.
Author: Allen M. Alper
Publisher:
Published: 1970
Total Pages: 386
ISBN-13:
DOWNLOAD EBOOKAuthor: Somnath Ghosh
Publisher: Springer Science & Business Media
Published: 2010-11-17
Total Pages: 669
ISBN-13: 1441906436
DOWNLOAD EBOOKComputational Methods for Microstructure-Property Relationships introduces state-of-the-art advances in computational modeling approaches for materials structure-property relations. Written with an approach that recognizes the necessity of the engineering computational mechanics framework, this volume provides balanced treatment of heterogeneous materials structures within the microstructural and component scales. Encompassing both computational mechanics and computational materials science disciplines, this volume offers an analysis of the current techniques and selected topics important to industry researchers, such as deformation, creep and fatigue of primarily metallic materials. Researchers, engineers and professionals involved with predicting performance and failure of materials will find Computational Methods for Microstructure-Property Relationships a valuable reference.
Author: M L McGlashan
Publisher: Royal Society of Chemistry
Published: 2007-10-31
Total Pages: 376
ISBN-13: 1847555829
DOWNLOAD EBOOKSpecialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
Author: Robert DeHoff
Publisher: CRC Press
Published: 2006-03-13
Total Pages: 622
ISBN-13: 0849340659
DOWNLOAD EBOOKThermodynamics in Materials Science, Second Edition is a clear presentation of how thermodynamic data is used to predict the behavior of a wide range of materials, a crucial component in the decision-making process for many materials science and engineering applications. This primary textbook accentuates the integration of principles, strategies, and thermochemical data to generate accurate “maps” of equilibrium states, such as phase diagrams, predominance diagrams, and Pourbaix corrosion diagrams. It also recommends which maps are best suited for specific real-world scenarios and thermodynamic problems. The second edition yet. Each chapter presents its subject matter consistently, based on the classification of thermodynamic systems, properties, and derivations that illustrate important relationships among variables for finding the conditions for equilibrium. Each chapter also contains a summary of important concepts and relationships as well as examples and sample problems that apply appropriate strategies for solving real-world problems. The up-to-date and complete coverage ofthermodynamic data, laws, definitions, strategies, and tools in Thermodynamics in Materials Science, Second Edition provides students and practicing engineers a valuable guide for producing and applying maps of equilibrium states to everyday applications in materials sciences.
Author: Mark F. Horstemeyer
Publisher: John Wiley & Sons
Published: 2018-03-20
Total Pages: 712
ISBN-13: 1119018366
DOWNLOAD EBOOKFocuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.