Three-Dimensional Navier-Stokes Equations for Turbulence

Three-Dimensional Navier-Stokes Equations for Turbulence

Author: Luigi C. Berselli

Publisher: Academic Press

Published: 2021-03-10

Total Pages: 330

ISBN-13: 0128219459

DOWNLOAD EBOOK

Three-Dimensional Navier-Stokes Equations for Turbulence provides a rigorous but still accessible account of research into local and global energy dissipation, with particular emphasis on turbulence modeling. The mathematical detail is combined with coverage of physical terms such as energy balance and turbulence to make sure the reader is always in touch with the physical context. All important recent advancements in the analysis of the equations, such as rigorous bounds on structure functions and energy transfer rates in weak solutions, are addressed, and connections are made to numerical methods with many practical applications. The book is written to make this subject accessible to a range of readers, carefully tackling interdisciplinary topics where the combination of theory, numerics, and modeling can be a challenge. - Includes a comprehensive survey of modern reduced-order models, including ones for data assimilation - Includes a self-contained coverage of mathematical analysis of fluid flows, which will act as an ideal introduction to the book for readers without mathematical backgrounds - Presents methods and techniques in a practical way so they can be rapidly applied to the reader's own work


Computation of Three-Dimensional Complex Flows

Computation of Three-Dimensional Complex Flows

Author: Michel Deville

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 406

ISBN-13: 3322898385

DOWNLOAD EBOOK

Der Sammelband enthält Beiträge einer Tagung über die Simulation von dreidimensionalen Flüssigkeiten. Sie geben einen Überblick über den Stand des Wissens auf dem Gebiet der numerischen Simulation der Turbulenz, angewandt auf eine weite Spanne von Problemen wie Aerodynamik, Nicht-Newtonsche Flüssigkeiten, Konvektion.This volume contains the material presented at the IMACS-COST Conference on CFD, Three-Dimensional Complex Flows, held in Lausanne (Switzerland), September 13 - 15, 1995. It gives an overview of the current state of numerical simulation and turbulence modelling applied to a wide range of fluid flow problems such as an example aerodynamics, non-Newtonian flows, transition, thermal convection.


Computation of Navier-Stokes Equations for Three-Dimensional Flow Separation

Computation of Navier-Stokes Equations for Three-Dimensional Flow Separation

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-06-30

Total Pages: 24

ISBN-13: 9781722116422

DOWNLOAD EBOOK

Supersonic flows over a sharp and a flat-faced blunt fin mounted on a flat plate are simulated numerically. Several basic issues involved in the resultant three-dimensional steady flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of a grid resolution on the origin of the line of separation. Various shock strengths are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of secondary separation. The length of separation ahead of the flat-faced blunt fin, bifurcation of a horseshoe vortex, and the accessibility of a closed-type separation are investigated. The usual interpretation of the flow field from previous studies and new interpretations arising from the present simulation are discussed. Hung, Ching-Mao Ames Research Center ...


Unsteady Aerodynamics and Aeroelasticity of Turbomachines

Unsteady Aerodynamics and Aeroelasticity of Turbomachines

Author: Torsten H. Fransson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 835

ISBN-13: 9401150400

DOWNLOAD EBOOK

Twenty-one years have passed since the first symposium in this series was held in Paris (1976). Since then there have been meetings in Lausanne (1980), Cambridge (1984), Aachen (1987), Beijing (1989), Notre Dame (1991) and Fukuoka (1994). During this period a tremendous development in the field of unsteady aerodynamics and aeroelasticity in turbomachines has taken place. As steady-state flow conditions become better known, and as blades in the turbomachine are constantly pushed towards lower weight, and higher load and efficiency, the importance of unsteady phenomena appear more clearly. th The 8 Symposium was, as the previous ones, of high quality. Furthermore, it presented the audience with the latest developments in experimental, numerical and theoretical research. More papers than ever before were submitted to the conference. As the organising committee wanted to preserve the uniqueness of the symposium by having single sessions, and thus mingle speakers and audience with different backgrounds in this interdisciplinary field, only a limited number of papers could be accepted. 54 papers were accepted and presented at the meeting, all of which are included in the present proceedings.


Development of Reduced-order Meshless Solutions of Three-dimensional Navier Sokes Transport Phenomena

Development of Reduced-order Meshless Solutions of Three-dimensional Navier Sokes Transport Phenomena

Author: Daniel Benjamin Work

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Abstract: Emerging meshless technologies are very promising for numerically solving Euler and Navier-Stokes transport systems in one-, two-, and three-dimensions (3-D). The Reduced-Order Meshless (ROM) technique developed in this work is applicable to a wide array of transport physics systems (i.e., fluid flow, heat transfer, gas dynamics, internal combustion flow and chemical reactions, and solid-liquid mixture flow) with various types of boundary and initial conditions. Such applications to be benchmarked in this work include one- and two-dimensional advection, and two- and three-dimensional convection-diffusion problems (Burgers' equation). Computational solutions to these boundary-value problems will be demonstrated using the ROM approach and the predicted solutions will be posted against the Meshless Local Petrov-Galerkin (MLPG) method and exact solutions to these problems when they exist. Extensions to 3-D phenomenology will be attempted based on the conclusions obtained from computational studies to establish the existence, smoothness, and boundedness of 3-D Navier-Stokes transport systems. An approximated benchmark solution of the Navier-Stokes equations is also developed in this work using a linearized perturbation analysis. The classical paper on gas turbine throughflow, Three Dimensional Flows in Turbomachines (Marble, 1964), outlines this procedure for approximation, and produces solutions for a class of axisymmetric problems. An investigation into the behavior of these solutions uncovered a series of inconsistencies in the paper, which are outlined in detail and corrected when known to be in error.


Computational Fluid Dynamics for Engineers

Computational Fluid Dynamics for Engineers

Author: Tuncer Cebeci

Publisher: Springer

Published: 2009-09-02

Total Pages: 396

ISBN-13: 9783540807254

DOWNLOAD EBOOK

History reminds us of ancient examples of fluid dynamics applications such as the Roman baths and aqueducts that fulfilled the requirements of the engineers who built them; of ships of various types with adequate hull designs, and of wind energy systems, built long before the subject of fluid mechanics was formalized by Reynolds, Newton, Euler, Navier, Stokes, Prandtl and others. The twentieth century has witnessed many more examples of applications of fluid dynamics for the use of humanity, all designed without the use of electronic computers. They include prime movers such as internal-combustion engines, gas and steam turbines, flight vehicles, and environmental systems for pollution control and ventilation. Computational Fluid Dynamics (CFD) deals with the numerical analysis of these phenomena. Despite impressive progress in recent years, CFD remains an imperfect tool in the comparatively mature discipline of fluid dynamics, partly because electronic digital computers have been in widespread use for less than thirty years. The Navier-Stokes equations, which govern the motion of a Newtonian viscous fluid were formulated well over a century ago. The most straightforward method of attacking any fluid dynamics problem is to solve these equations for the appropriate boundary conditions. Analytical solutions are few and trivial and, even with today's supercomputers, numerically exact solution of the complete equations for the three-dimensional, time-dependent motion of turbulent flow is prohibitively expensive except for basic research studies in sim ple configurations at low Reynolds numbers. Therefore, the "straightforward" approach is still impracticable for engineering purposes.


Fluid Dynamics

Fluid Dynamics

Author: Constantine Pozrikidis

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 686

ISBN-13: 1475733232

DOWNLOAD EBOOK

Ready access to computers at an institutional and personal level has defined a new era in teaching and learning. The opportunity to extend the subject matter of traditional science and engineering disciplines into the realm of scientific computing has become not only desirable, but also necessary. Thanks to port ability and low overhead and operating costs, experimentation by numerical simulation has become a viable substitute, and occasionally the only alternative, to physical experiment at ion. The new environment has motivated the writing of texts and mono graphs with a modern perspective that incorporates numerical and com puter programming aspects as an integral part of the curriculum: meth ods, concepts, and ideas should be presented in a unified fashion that motivates and underlines the urgency of the new elements, but does not compromise the rigor of the classical approach and does not oversimplify. Interfacing fundamental concepts and practical methods of scientific computing can be done on different levels. In one approach, theory and implement at ion are kept complementary and presented in a sequential fashion. In a second approach, the coupling involves deriving compu tational methods and simulation algorithms, and translating equations into computer code instructions immediately following problem formu lations. The author of this book is a proponent of the second approach and advocates its adoption as a means of enhancing learning: interject ing methods of scientific computing into the traditional discourse offers a powerful venue for developing analytical skills and obtaining physical insight.