Computational Stochastic Mechanics

Computational Stochastic Mechanics

Author: P.D. Spanos

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 886

ISBN-13: 9401136920

DOWNLOAD EBOOK

Over a period of several years the field of probabilistic mechanics and com putational mechanics have progressed vigorously, but independently. With the advent of powerful computational hardware and the development of novel mechanical techniques, the field of stochastic mechanics has progressed in such a manner that the inherent uncertainty of quite complicated systems can be addressed. The first International Conference on Computational Stochastic Mechanics was convened in Corfu in September 1991 in an ef fort to provide a forum for the exchanging of ideas on the current status of computational methods as applied to stochastic mechanics and for identi fying needs for further research. The Conference covered both theoretical techniques and practical applications. The Conference also celebrated the 60th anniversary of the birthday of Dr. Masanobu Shinozuka, the Sollenberger Professor of Civil Engineering at Princeton University, whose work has contributed in such a great measure to the development of Computational Stochastic Mechanics. A brief sum mary of his career and achievements are given in the Dedication. This book comprises some of the papers presented at the meeting and cov ers sections on Theoretical Reliability Analysis; Damage Analysis; Applied Reliability Analysis; Theoretical Random Vibrations; Stochastic Finite Ele ment Concept; Fatigue and Fracture; Monte Carlo Simulations; Earthquake Engineering Applications; Materials; Applied Random Vibrations; Applied Stochastic Finite Element Analysis, and Flow Related Applications and Chaotic Dynamics. The Editors hope that the book will be a valuable contribution to the grow ing literature covering the field of Computational Stochastic Mechanics.


Computational Mechanics ’95

Computational Mechanics ’95

Author: S.N. Atluri

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 3181

ISBN-13: 3642796540

DOWNLOAD EBOOK

AI!, in the earlier conferences (Tokyo, 1986; Atlanta, 1988, Melbourne, 1991; and Hong Kong, 1992) the response to the call for presentations at ICES-95 in Hawaii has been overwhelming. A very careful screening of the extended abstracts resulted in about 500 paper being accepted for presentation. Out of these, written versions of about 480 papers reached the conference secretariat in Atlanta in time for inclusion in these proceedings. The topics covered at ICES-95 range over the broadest spectrum of computational engineering science. The editors thank the international scientific committee, for their advice and encouragement in making ICES-95 a successful scientific event. Special thanks are expressed to the International Association for Boundary Elements Methods for hosting IABEM-95 in conjunction with ICES-95. The editors here express their deepest gratitude to Ms. Stacy Morgan for her careful handling of a myriad of details of ICES-95, often times under severe time constraints. The editors hope that the readers of this proceedings will find a kaleidoscopic view of computational engineering in the year 1995, as practiced in various parts of the world. Satya N. Atluri Atlanta, Georgia, USA Genki Yagawa Tokyo,Japan Thomas A. Cruse Nashville, TN, USA Organizing Committee Professor Genki Yagawa, University of Tokyo, Japan, Chair Professor Satya Atluri, Georgia Institute of Technology, U.S.A.


Uncertainty Modeling in Finite Element, Fatigue and Stability of Systems

Uncertainty Modeling in Finite Element, Fatigue and Stability of Systems

Author: Achintya Haldar

Publisher: World Scientific

Published: 1997

Total Pages: 437

ISBN-13: 9810231288

DOWNLOAD EBOOK

The functionality of modern structural, mechanical and electrical or electronic systems depends on their ability to perform under uncertain conditions. Consideration of uncertainties and their effect on system behavior is an essential and integral part of defining systems. In eleven chapters, leading experts present an overview of the current state of uncertainty modeling, analysis and design of large systems in four major areas: finite and boundary element methods (common structural analysis techniques), fatigue, stability analysis, and fault-tolerant systems. The content of this book is unique; it describes exciting research developments and challenges in emerging areas, and provide a sophisticated toolbox for tackling uncertainty modeling in real systems.