Computational Nuclear Physics 2

Computational Nuclear Physics 2

Author: K. Langanke

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 216

ISBN-13: 1461393353

DOWNLOAD EBOOK

Computation is essential to our modern understanding of nuclear systems. Although simple analytical models might guide our intuition, the complex ity of the nuclear many-body problem and the ever-increasing precision of experimental results require large-scale numerical studies for a quantitative understanding. Despite their importance, many nuclear physics computations remain something of a black art. A practicing nuclear physicist might be familiar with one or another type of computation, but there is no way to systemati cally acquire broad experience. Although computational methods and results are often presented in the literature, it is often difficult to obtain the working codes. More often than not, particular numerical expertise resides in one or a few individuals, who must be contacted informally to generate results; this option becomes unavailable when these individuals leave the field. And while the teaching of modern nuclear physics can benefit enormously from realistic computer simulations, there has been no source for much of the important material. The present volume, the second of two, is an experiment aimed at address ing some of these problems. We have asked recognized experts in various aspects of computational nuclear physics to codify their expertise in indi vidual chapters. Each chapter takes the form of a brief description of the relevant physics (with appropriate references to the literature), followed by a discussion of the numerical methods used and their embodiment in a FOR TRAN code. The chapters also contain sample input and test runs, as well as suggestions for further exploration.


An Advanced Course in Computational Nuclear Physics

An Advanced Course in Computational Nuclear Physics

Author: Morten Hjorth-Jensen

Publisher: Springer

Published: 2017-05-09

Total Pages: 654

ISBN-13: 3319533363

DOWNLOAD EBOOK

This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.


Computational Nuclear Engineering and Radiological Science Using Python

Computational Nuclear Engineering and Radiological Science Using Python

Author: Ryan McClarren

Publisher: Academic Press

Published: 2017-10-19

Total Pages: 462

ISBN-13: 0128123710

DOWNLOAD EBOOK

Computational Nuclear Engineering and Radiological Science Using Python provides the necessary knowledge users need to embed more modern computing techniques into current practices, while also helping practitioners replace Fortran-based implementations with higher level languages. The book is especially unique in the market with its implementation of Python into nuclear engineering methods, seeking to do so by first teaching the basics of Python, then going through different techniques to solve systems of equations, and finally applying that knowledge to solve problems specific to nuclear engineering. Along with examples of code and end-of-chapter problems, the book is an asset to novice programmers in nuclear engineering and radiological sciences, teaching them how to analyze complex systems using modern computational techniques. For decades, the paradigm in engineering education, in particular, nuclear engineering, has been to teach Fortran along with numerical methods for solving engineering problems. This has been slowly changing as new codes have been written utilizing modern languages, such as Python, thus resulting in a greater need for the development of more modern computational skills and techniques in nuclear engineering. - Offers numerical methods as a tool to solve specific problems in nuclear engineering - Provides examples on how to simulate different problems and produce graphs using Python - Supplies accompanying codes and data on a companion website, along with solutions to end-of-chapter problems


Computational Nuclear Physics 1

Computational Nuclear Physics 1

Author: K. Langanke

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 220

ISBN-13: 3642763561

DOWNLOAD EBOOK

A variety of standard problems in theoretical nuclear-structure physics is addressed by the well-documented computer codes presented in this book. Most of these codes were available up to now only through personal contact. The subject matter ranges from microscopic models (the shell, Skyrme-Hartree-Fock, and cranked Nilsson models) through collective excitations (RPA, IBA, and geometric model) to the relativistic impulse approximation, three-body calculations, variational Monte Carlo methods, and electron scattering. The 5 1/4'' high-density floppy disk that comes with the book contains the FORTRAN codes of the problems that are tackled in each of the ten chapters. In the text, the precise theoretical foundations and motivations of each model or method are discussed together with the numerical methods employed. Instructions for the use of each code, and how to adapt them to local compilers and/or operating systems if necessary, are included.


Computational Many-Particle Physics

Computational Many-Particle Physics

Author: Holger Fehske

Publisher: Springer

Published: 2007-12-10

Total Pages: 774

ISBN-13: 3540746862

DOWNLOAD EBOOK

Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.


Nuclear Physics

Nuclear Physics

Author: National Research Council

Publisher: National Academies Press

Published: 2013-02-25

Total Pages: 263

ISBN-13: 0309260434

DOWNLOAD EBOOK

The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.


Lattice QCD for Nuclear Physics

Lattice QCD for Nuclear Physics

Author: Huey-Wen Lin

Publisher: Springer

Published: 2014-11-21

Total Pages: 255

ISBN-13: 3319080229

DOWNLOAD EBOOK

With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.


Handbook of Nuclear Physics

Handbook of Nuclear Physics

Author: Isao Tanihata

Publisher: Springer Nature

Published: 2023-09-04

Total Pages: 4180

ISBN-13: 9811963452

DOWNLOAD EBOOK

This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.


Advances in Nuclear Physics

Advances in Nuclear Physics

Author: J.W. Negele

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 463

ISBN-13: 1461524059

DOWNLOAD EBOOK

The quest for many-body techniques and approximations to describe the essential physics of strongly interacting systems with many degrees of freedom is one of the central themes of contemporary nuclear physics. The three articles in this volume describe advances in this quest in three dif ferent areas of nuclear many-body physics: multi quark degrees of freedom in nucleon-nucleon interactions and light nuclei, multinucleon clusters in many-nucleon wave functions and reactions, and the nuclear-shell model. In each case the common issues arise of identifying the relevant degrees of freedom, truncating those that are inessential, formulating tractable approximations, and judiciously invoking phenomenology when it is not possible to proceed from first principles. Indeed, the parallels between the different applications are often striking, as in the case of the similarities in the treatment of clusters of quarks in nucleon-nucleon interactions and clusters of nucleons in nuclear reactions, and the central role of the resonating group approximation in treating both. Despite two decades of effort since the experimental discovery of quarks in nucleons, we are still far from a derivation of nucleon structure and nucleon-nucleon interactions directly from quantum chromodynamics.