Computational Modeling of Masonry Structures Using the Discrete Element Method

Computational Modeling of Masonry Structures Using the Discrete Element Method

Author: Sarhosis, Vasilis

Publisher: IGI Global

Published: 2016-06-09

Total Pages: 526

ISBN-13: 1522502327

DOWNLOAD EBOOK

The Discrete Element Method (DEM) has emerged as a solution to predicting load capacities of masonry structures. As one of many numerical methods and computational solutions being applied to evaluate masonry structures, further research on DEM tools and methodologies is essential for further advancement. Computational Modeling of Masonry Structures Using the Discrete Element Method explores the latest digital solutions for the analysis and modeling of brick, stone, concrete, granite, limestone, and glass block structures. Focusing on critical research on mathematical and computational methods for masonry analysis, this publication is a pivotal reference source for scholars, engineers, consultants, and graduate-level engineering students.


The Combined Finite-Discrete Element Method

The Combined Finite-Discrete Element Method

Author: Antonio A. Munjiza

Publisher: John Wiley & Sons

Published: 2004-04-21

Total Pages: 348

ISBN-13: 0470020172

DOWNLOAD EBOOK

The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.


Discrete Computational Mechanics of Masonry Structures

Discrete Computational Mechanics of Masonry Structures

Author: Katalin Bagi

Publisher: Springer Nature

Published: 2023-09-02

Total Pages: 239

ISBN-13: 3031324765

DOWNLOAD EBOOK

This book provides an overview to those most important modern and traditional methods of masonry analysis that are able to capture the discrete internal built-up of masonry structures. Such methods are available in a wide variety today – from computational packages based on classical graphical statics techniques through discrete element methods or the most sophisticated no-tension semi-continuum models – , and this book reviews their theoretical foundations, as well as their advantages and preferable fields of application, also calling the attention on their limitations so that the reader could build up a critical view of the choices they have when attacking a masonry mechanics problem. The book gives a basis for the readers to become able to develop their own methods, inspired either by classical graphical statics, or by any modern technique they find promising.


Numerical Modeling of Masonry and Historical Structures

Numerical Modeling of Masonry and Historical Structures

Author: Bahman Ghiassi

Publisher: Woodhead Publishing

Published: 2019-06-15

Total Pages: 819

ISBN-13: 0081024401

DOWNLOAD EBOOK

Numerical Modeling of Masonry and Historical Structures: From Theory to Application provides detailed information on the theoretical background and practical guidelines for numerical modeling of unreinforced and reinforced (strengthened) masonry and historical structures. The book consists of four main sections, covering seismic vulnerability analysis of masonry and historical structures, numerical modeling of unreinforced masonry, numerical modeling of FRP-strengthened masonry, and numerical modeling of TRM-strengthened masonry. Each section reflects the theoretical background and current state-of-the art, providing practical guidelines for simulations and the use of input parameters. - Covers important issues relating to advanced methodologies for the seismic vulnerability assessment of masonry and historical structures - Focuses on modeling techniques used for the nonlinear analysis of unreinforced masonry and strengthened masonry structures - Follows a theory to practice approach


Optimization of Design for Better Structural Capacity

Optimization of Design for Better Structural Capacity

Author: Belgasmia, Mourad

Publisher: IGI Global

Published: 2018-11-16

Total Pages: 299

ISBN-13: 1522570608

DOWNLOAD EBOOK

Despite the development of advanced methods, models, and algorithms, optimization within structural engineering remains a primary method for overcoming potential structural failures. With the overarching goal to improve capacity, limit structural damage, and assess the structural dynamic response, further improvements to these methods must be entertained. Optimization of Design for Better Structural Capacity is an essential reference source that discusses the advancement and augmentation of optimization designs for better behavior of structure under different types of loads, as well as the use of these advanced designs in combination with other methods in civil engineering. Featuring research on topics such as industrial software, geotechnical engineering, and systems optimization, this book is ideally designed for architects, professionals, researchers, engineers, and academicians seeking coverage on advanced designs for use in civil engineering environments.


Advanced Technologies, Systems, and Applications III

Advanced Technologies, Systems, and Applications III

Author: Samir Avdaković

Publisher: Springer

Published: 2018-11-03

Total Pages: 593

ISBN-13: 3030025772

DOWNLOAD EBOOK

This book introduces innovative and interdisciplinary applications of advanced technologies. Featuring the papers from the 10th DAYS OF BHAAAS (Bosnian-Herzegovinian American Academy of Arts and Sciences) held in Jahorina, Bosnia and Herzegovina on June 21–24, 2018, it discusses a wide variety of engineering and scientific applications of the different techniques. Researchers from academic and industry present their work and ideas, techniques and applications in the field of power systems, mechanical engineering, computer modelling and simulations, civil engineering, robotics and biomedical engineering, information and communication technologies, computer science and applied mathematics.


Innovative Approaches in Computational Structural Engineering

Innovative Approaches in Computational Structural Engineering

Author: George C. Tsiatas

Publisher: Frontiers Media SA

Published: 2020-04-22

Total Pages: 266

ISBN-13: 2889636070

DOWNLOAD EBOOK

Nowadays, numerical computation has become one of the most vigorous tools for scientists, researchers and professional engineers, following the enormous progress made during the last decades in computing technology, in terms of both computer hardware and software development. Although this has led to tremendous achievements in computer-based structural engineering, the increasing necessity of solving complex problems in engineering requires the development of new ideas and innovative methods for providing accurate numerical solutions in affordable computing times. This collection aims at providing a forum for the presentation and discussion of state-of-the-art innovative developments, concepts, methodologies and approaches in scientific computation applied to structural engineering. It involves a wide coverage of timely issues on computational structural engineering with a broad range of both research and advanced practical applications. This Research Topic encompasses, but is not restricted to, the following scientific areas: modeling in structural engineering; finite element methods; boundary element methods; static and dynamic analysis of structures; structural stability; structural mechanics; meshless methods; smart structures and systems; fire engineering; blast engineering; structural reliability; structural health monitoring and control; optimization; and composite materials, with application to engineering structures.


Structural Analysis of Historical Constructions

Structural Analysis of Historical Constructions

Author: Yohei Endo

Publisher: Springer Nature

Published: 2023-10-03

Total Pages: 1340

ISBN-13: 303139450X

DOWNLOAD EBOOK

This book gathers the peer-reviewed papers presented at the 13th International Conference on Structural Analysis of Historical Constructions (SAHC), held in Kyoto, Japan, on September 12-15, 2023. It highlights the latest advances and innovations in the field of conservation and restoration of historical and heritage structures. The conference topics encompass history of construction and building technology, theory and practice of conservation, inspection methods, non-destructive techniques and laboratory testing, numerical modeling and structural analysis, management of heritage structures and conservation strategies, structural health monitoring, repair and strengthening strategies and techniques, vernacular constructions, seismic analysis and retrofit, vulnerability and risk analysis, resilience of historic areas to climate change and hazard events, durability, and sustainability. As such the book represents an invaluable, up-to-the-minute tool, providing an essential overview of conservation of historical constructions, and offers an important platform to engineers, architects, archeologists, and geophysicists. Chapter The Challenges of the Conservation of Earthen Sites in Seismic Areas, Chapter Performance Evaluation of Patch Repairs on Historic Concrete Structures (PEPS): Preliminary Results from Two English Case Studies are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.


The Cell Method

The Cell Method

Author: Elena Ferretti

Publisher:

Published: 2014

Total Pages: 0

ISBN-13: 9781606506042

DOWNLOAD EBOOK

Finite Element, Boundary Element, Finite Volume, and Finite Difference Analysis are all commonly used in nearly all engineering disciplines to simplify complex problems of geometry and change. But they all tend to oversimplify. The Cell Method is a more recent computational approach developed initially for problems in solid mechanics and electro-magnetic field analysis. It is a more algebraic approach, and it offers a more accurate representation of geometric and topological features. This will be perhaps the first book-length work in the world that explicates the Cell Method and that shows how useful it can be for practical problem solving, especially in problems in solid mechanics.


Emerging Applications and Implementations of Metal-Organic Frameworks

Emerging Applications and Implementations of Metal-Organic Frameworks

Author: Elsaeed, Shimaa Mohamed

Publisher: IGI Global

Published: 2021-03-18

Total Pages: 254

ISBN-13: 1799847616

DOWNLOAD EBOOK

Metal-organic frameworks (MOFs) are some of the most discussed materials of the last decade. Their extraordinary porosity and functionality from metals and organic linkers make them one of the most promising materials for a vast array of applications. The easy tunability of their pore size and shape from the micro- to meso-scale by changing the connectivity of the inorganic moiety and the nature of the organic linkers makes these materials special. Moreover, by combining with other suitable materials, the properties of MOFs can be improved further for enhanced functionality/stability, ease of preparation, and selectivity of operation. Emerging Applications and Implementations of Metal-Organic Frameworks combines the latest empirical research findings with relevant theoretical frameworks in this area in order to improve the reader’s understanding of MOFs and their different applications in areas that include drug delivery, heavy metal removal from water, and gas storage. The design and synthesis of MOFs are also investigated along with the preparation of composites of MOFs. While covering applications that include water defluoridation, rechargeable batteries, and pharmaceutically adapted drug delivery systems, the book’s target audience is comprised of professionals, researchers, academicians, and students working in the field of physical and polymer chemistry, physics, engineering science, and environmental science.