Computational Modeling by Case Study

Computational Modeling by Case Study

Author: Zachary del Rosario

Publisher: Cambridge Scholars Publishing

Published: 2024-04-02

Total Pages: 849

ISBN-13: 1036402924

DOWNLOAD EBOOK

Mathematical models power the modern world; they allow us to design safe buildings, investigate changes to the climate, and study the transmission of diseases through a population. However, all models are uncertain: building contractors deviate from the planned design, humans impact the climate unpredictably, and diseases mutate and change. Modern advances in mathematics and statistics provide us with techniques to understand and quantify these sources of uncertainty, allowing us to predict and design with confidence. This book presents a comprehensive treatment of uncertainty: its conceptual nature, techniques to quantify uncertainty, and numerous examples to illustrate sound approaches. Several case studies are discussed in detail to demonstrate an end-to-end treatment of scientific modeling under uncertainty, including framing the problem, building and assessing a model, and answering meaningful questions. The book illustrates a computational approach with the Python package Grama, presenting fully reproducible examples that students and practitioners can quickly adapt to their own problems.


Think Complexity

Think Complexity

Author: Allen B. Downey

Publisher: "O'Reilly Media, Inc."

Published: 2012-02-23

Total Pages: 159

ISBN-13: 1449331696

DOWNLOAD EBOOK

Expand your Python skills by working with data structures and algorithms in a refreshing context—through an eye-opening exploration of complexity science. Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations. You’ll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise. Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tables Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines Get starter code and solutions to help you re-implement and extend original experiments in complexity Explore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topics Examine case studies of complex systems submitted by students and readers


Computational Modeling of Cognition and Behavior

Computational Modeling of Cognition and Behavior

Author: Simon Farrell

Publisher: Cambridge University Press

Published: 2018-02-22

Total Pages: 485

ISBN-13: 110710999X

DOWNLOAD EBOOK

This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.


Computational Modeling Of The Covid-19 Disease: Numerical Ode Analysis With R Programming

Computational Modeling Of The Covid-19 Disease: Numerical Ode Analysis With R Programming

Author: William E Schiesser

Publisher: World Scientific

Published: 2020-06-16

Total Pages: 109

ISBN-13: 9811222894

DOWNLOAD EBOOK

The book is intended for readers who are interested in learning about the use of computer-based modelling of the COVID-19 disease. It provides a basic introduction to a five-ordinary differential equation (ODE) model by providing a complete statement of the model, including a detailed discussion of the ODEs, initial conditions and parameters, followed by a line-by-line explanation of a set of R routines (R is a quality, scientific programming system readily available from the Internet). The reader can access and execute these routines without having to first study numerical algorithms and computer coding (programming) and can perform numerical experimentation with the model on modest computers.


Integrated Computational Materials Engineering

Integrated Computational Materials Engineering

Author: National Research Council

Publisher: National Academies Press

Published: 2008-10-24

Total Pages: 152

ISBN-13: 0309119995

DOWNLOAD EBOOK

Integrated computational materials engineering (ICME) is an emerging discipline that can accelerate materials development and unify design and manufacturing. Developing ICME is a grand challenge that could provide significant economic benefit. To help develop a strategy for development of this new technology area, DOE and DoD asked the NRC to explore its benefits and promises, including the benefits of a comprehensive ICME capability; to establish a strategy for development and maintenance of an ICME infrastructure, and to make recommendations about how best to meet these opportunities. This book provides a vision for ICME, a review of case studies and lessons learned, an analysis of technological barriers, and an evaluation of ways to overcome cultural and organizational challenges to develop the discipline.


Computational Modeling in Cognition

Computational Modeling in Cognition

Author: Stephan Lewandowsky

Publisher: SAGE

Published: 2010-11-29

Total Pages: 377

ISBN-13: 1452236194

DOWNLOAD EBOOK

An accessible introduction to the principles of computational and mathematical modeling in psychology and cognitive science This practical and readable work provides students and researchers, who are new to cognitive modeling, with the background and core knowledge they need to interpret published reports, and develop and apply models of their own. The book is structured to help readers understand the logic of individual component techniques and their relationships to each other.


Scientific Computing with Case Studies

Scientific Computing with Case Studies

Author: Dianne P. O'Leary

Publisher: SIAM

Published: 2009-03-19

Total Pages: 376

ISBN-13: 0898716667

DOWNLOAD EBOOK

This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.


Case Studies in Neural Data Analysis

Case Studies in Neural Data Analysis

Author: Mark A. Kramer

Publisher: MIT Press

Published: 2016-11-04

Total Pages: 385

ISBN-13: 0262529378

DOWNLOAD EBOOK

A practical guide to neural data analysis techniques that presents sample datasets and hands-on methods for analyzing the data. As neural data becomes increasingly complex, neuroscientists now require skills in computer programming, statistics, and data analysis. This book teaches practical neural data analysis techniques by presenting example datasets and developing techniques and tools for analyzing them. Each chapter begins with a specific example of neural data, which motivates mathematical and statistical analysis methods that are then applied to the data. This practical, hands-on approach is unique among data analysis textbooks and guides, and equips the reader with the tools necessary for real-world neural data analysis. The book begins with an introduction to MATLAB, the most common programming platform in neuroscience, which is used in the book. (Readers familiar with MATLAB can skip this chapter and might decide to focus on data type or method type.) The book goes on to cover neural field data and spike train data, spectral analysis, generalized linear models, coherence, and cross-frequency coupling. Each chapter offers a stand-alone case study that can be used separately as part of a targeted investigation. The book includes some mathematical discussion but does not focus on mathematical or statistical theory, emphasizing the practical instead. References are included for readers who want to explore the theoretical more deeply. The data and accompanying MATLAB code are freely available on the authors' website. The book can be used for upper-level undergraduate or graduate courses or as a professional reference. A version of this textbook with all of the examples in Python is available on the MIT Press website.


Handbook of Computational Social Science, Volume 1

Handbook of Computational Social Science, Volume 1

Author: Uwe Engel

Publisher: Taylor & Francis

Published: 2021-11-10

Total Pages: 417

ISBN-13: 1000448584

DOWNLOAD EBOOK

The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches. The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This first volume focuses on the scope of computational social science, ethics, and case studies. It covers a range of key issues, including open science, formal modeling, and the social and behavioral sciences. This volume explores major debates, introduces digital trace data, reviews the changing survey landscape, and presents novel examples of computational social science research on sensing social interaction, social robots, bots, sentiment, manipulation, and extremism in social media. The volume not only makes major contributions to the consolidation of this growing research field but also encourages growth in new directions. With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientifi c and engineering sectors.


Mathematical and Computational Modeling and Simulation

Mathematical and Computational Modeling and Simulation

Author: Dietmar P.F. Möller

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 438

ISBN-13: 3642187099

DOWNLOAD EBOOK

This introduction and textbook familiarizes engineers with the use of mathematical and computational modeling and simulation in a way that develops their understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some fifteen simulation systems are presented on the language and the logical level. Moreover, the reader also can accumulate an experiential overview by studying the wide variety of case studies spanning much of science and engineering. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for courses on various levels as well as for self-study. Advanced sections are identified and can be skipped in a first reading or in undergraduate courses.